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Abstract

A critical way in which language acquisition has been said to differ from other learning is in the
results of inconsistent input. In language acquisition, it is common for the data available to the learner
to be imperfect, but this has little effect on children’s learning—they force the system to be regular by
extracting or creating rules. In other domains, however, such as probability-learning experiments, people
are said to be faithful to the probabilistic structure of the data to which they are exposed. This leads to
the assumption that language must be learned by different mechanisms.

However, previous studies may have confounded the effect of linguistic vs. non-linguistic tasks with
the complexity or structure of the learning problem, or with the age of the learners studied. Following
Newport’s Less is More hypothesis, we suggest that the structure of the system being learned interacts
with the capabilities and constraints of the learner to create the different learning patterns, independent
of the domain.

This dissertation describes three experiments, which use a new paradigm for presenting multidimen-
sional structured systems. The subjects are to learn a mapping relation between objects and actions by
watching observation trials which exemplify the regularities but also contain exceptions. Adults and 7-
year-old children are tested on various systems which vary in complexity and quality of data, and their
learning is evaluated by prediction and generalization tests.

While adults turn out to be better at learning the details of the systems, children demonstrate a
tendency to respond according to a consistent pattern, inventing one if necessary. This is parallel to some
phenomena of language acquisition, suggesting that language may be learned by the same mechanisms
that support the learning of other complex systems.
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1 Introduction

PERFECTION is rare, and perfect data are seldom encountered. Most of what people are able to observe
in the world around them is inconsistent, incomplete, and uncertain—and yet, these are the data that
must serve as the basis for our learning, beliefs, and actions.

A prime example is the learning of a language. Children are able to acquire fluent language under
widely varying conditions, even if the linguistic input that they are exposed to is sparse or inconsistent
(Bickerton, 1984; Singleton & Newport, 1993). In fact, even a child growing up in a family of prolific
language-users may not get enough data to deduce the structure of language from scratch, which has led
to the theory that children must possess a special purpose language-learning device and a large amount
of built-in linguistic knowledge (e.g. , Chomsky 1975). In situations where the input available to the
child is particularly poor, children systematize and expand on their data, reinventing the language—or,
in some situations, creating a new language. In the standard account, the language-learning module is
claimed to be responsible for this creative process.

In domains other than language, however, it is generally claimed that people are quite faithful to the
data that they are learning from: if exposed to an inconsistent pattern of data, rather than systematizing it,
they mimic its probabilistic nature; when asked to predict the occurrence of randomly-generated events,
the distribution of their predictions quickly approaches the actual probability distribution of the events
(Estes, 1972).

Thus, although learning from probabilistic data has been studied in various domains, a unified un-
derstanding of the phenomena has yet to be achieved. The linguistic domain has been set apart from
other domains, and learning there has been assumed to operate by different rules. However, a review of
the literatures of probability learning and language acquisition, presented below, hints that there may be
more in common between the two than is generally thought. The caricatures of learning theories above
are simplistic versions of claims that are already oversimplified with respect to the data.

Following the literature review, an experimental study is presented which explores the possible simi-
larities between learning in the linguistic and non-linguistic domains, concentrating on the task of learn-
ing from probabilistic information, and looking at whether children or adults will create rules when
presented with unruly data. The experiments employ a new experimental paradigm in which subjects
learn various complex systems that are not linguistic, but share some crucial properties with linguistic
systems. In the learning of these systems, we are particularly interested in whether subjects will respond
to the probabilistic nature of the data by matching its probabilities, as has been found in many so-called
probability-learning experiments, or by forming rules and ignoring their data’s exceptions, as is found in
language acquisition.

If the non-linguistic systems are learned in a language-like way, then it would suggest that language
learning may in fact use some of the same mechanisms as learning in other domains, and provide support
for the idea that it is not the domain but the structure of the learning problem, interacting with the
capabilities of the learner, that determines how learning proceeds.
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1.1 Probability Learning

The data I am concerned with in this thesis are probabilistic, in the following sense: the majority of
examples to which the learner is exposed follow a particular rule, but a fraction of them violate it. For
example, if you are counting vehicles on the highway, most of the examples that you encounter support
the following “rule”:

• Highway vehicles are cars.

However, the rule is not consistently supported, since it is also true that some highway vehicles are trucks,
motorcycles, bicycles, and tractors. It is not a rule in the strict sense, but rather a statement that holds
true only a certain percentage of the time (higher for some roads than others). If this percentage is high
enough, however, an observer may be justified in treating it as a rule, making inferences and acting based
on the belief that it is true, while still keeping in mind the fact that it is not certain (Kyburg, 1990a,b).

A parallel example from the domain of language is the English past tense. For most words, the rule
is:

• To form the past tense, add -ed.

Thus toss becomes tossed, and row becomes rowed. However, like the rule about cars on the highway,
this rule is also not a complete description of the data: there are a number of common words whose
past tense is made differently: get becomes got, not getted. The rule is useful, despite its incomplete
accuracy, since it can be used to summarize much of the data and to predict the past tenses of unknown
words. Furthermore, it is learned and used by children, as is demonstrated by their occasional use of
forms like “getted.”

The two examples above are not quite parallel, however. Children can and eventually do learn the
complete system of rules and exceptions for English past tenses, but correct prediction of highway vehi-
cles is never possible, since there is no deterministic underlying system to be learned.

1.1.1 Probability Matching

The study of learning from data that are inconsistent was brought into the laboratory as early as 1939 by
means of the binary prediction paradigm (Humphreys, 1939; Grant, Hake & Hornseth, 1951). A classic
form of this experiment uses an apparatus with two lamps and two corresponding buttons. On each trial,
subjects are supposed to guess which lamp is going to light up, and indicate their choice by pushing the
appropriate button. One of the lamps then lights, confirming or disconfirming the prediction.

If the “correct” lamp for each trial is assigned randomly, subjects will quickly come to choose each
one in proportion to how often it is correct. This pattern of behavior is called probability matching. It
is a very strong tendency, and persists through many variations on the basic experiment. For example, if
the probabilities of the two lamps are changed during the experiment, the pattern of responses will also
change, eventually coming back into agreement with the prevailing probabilities (Friedman & others,
1964); if these changes in probability are regular and periodic, subjects can track them with essentially no
lag (Reber & Millward, 1971. For a review of many more variations of probability-learning experiments,
see Estes, 1972, 1976).

1.1.2 Maximizing

The prevalence of probability matching may be surprising, if one stops to consider what the optimal
strategy would be for the binary prediction task. If the subjects’ goal is to make the maximum number
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Figure 1.1: Three of the possible strategies for making predictions in a probabilistic situation. Each
graph shows the probability with which the subject predicts an outcome, as a function of the actual
probability of that outcome occurring: (a) probability-matching; (b) overmatching; (c) maximizing.

of correct predictions, and they know that the left button is correct 75% of the time, they can achieve the
theoretically optimal score of 75% only by pressing the left button on every trial. This strategy is called
maximizing. Any other strategy will result in fewer correct predictions; for example, the probability-
matching strategy is correct on only 62% of trials (75% of the left-button choices plus 25% of the right-
button choices).

Maximizing is rarely cited as the result of probability-learning experiments, but it does appear un-
der certain conditions. If explicit (monetary) rewards are given for correct answers, or if incorrect an-
swers are somehow punished, a trend towards maximizing is seen (Suppes & Atkinson, 1960; Estes,
1972). Experiments with animals, which use explicit rewards, also typically elicit maximizing. How-
ever, probability-matching may be found in animals if feedback is provided in the form of correction
trials. These are “second chance” trials following an incorrect choice, in which the animal is directed
to choose the correct alternative and then rewarded. Based on experiments using a correction-trial pro-
cedure, Bitterman (1986, 1991, but see Brookshire, 1978 for a critique) found that certain species will
maximize (including rats, monkeys, and pigeons) and others will not (fish, and for certain cognitively
demanding problems, also turtles).

Children of certain ages are reported to adopt a maximizing strategy more readily than adults (Weir,
1964; Bever, 1982): Bever’s study found that 63% of 2-year-olds maximized (defined here as choosing, 6
times in a row, a cup that had candy in it on 60% of the trials), while only 17% of 4-year-olds maximized
on the same task. Interestingly, another 18% of the 2-year-olds minimized, consistently choosing the less
frequently rewarded cup. This minimizing response was also occasionally seen in 3-year-olds on a more
difficult, 55/45% problem. Thus, although the youngest children did not always choose the correct cup,
they nearly always chose a single cup and responded consistently to it.

1.1.3 Other Strategies

Probability-matching and maximizing are certainly not the only possible reactions to probabilistic data.
A common intermediate strategy, called overmatching, is responding to the most frequent alternative with
with slightly more than its true frequency. Figure 1.1 shows a schematic representation of overmatching
data, in comparison to probability-matching and maximizing.

A tendency to overshoot by 3-5% has been found in a great number of two-choice probability-
learning experiments with adults (Reber & Millward, 1968; Estes, 1972). One case where overmatching
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is apparently the rule is in three-choice probability-learning situations; the 70% choice in a three-choice
problem whose answers are correct in the proportions 70/15/15 is chosen significantly more often than
the 70% choice in an otherwise identical 70/30 problem (Gardner, 1957).

Thus, it is not the case that non-deterministic data always elicit matching behavior; rather, probability-
matching is a response that results, in adult humans and some other animals, from particular combina-
tions of situation, motivation, and context.

Another example from the developmental literature may make clear the kind of subtle interactions
that are at play. Weir (1964) presented subjects 3 to 18 years old with two different systems of 3-way
choices. One of the response choices was correct on 33% or 66% of the trials, and the other two choices
were never rewarded at all (in contrast to standard probability-learning experiments, where on every
trial there is exactly one correct choice). After 80 trials, both the oldest and youngest subjects were
responding, on nearly every trial, to the button that was sometimes correct. Surprisingly, however, the
11-year-olds were not. All of the subjects at intermediate ages had lower percentages of responding to
the correct choice than those at the extremes of age tested.

This becomes understandable only upon analysis of the different learning styles of the three groups.
The 3-year-olds were apparently responding in much the way a simple stimulus-response theory would
predict: with each reward their probability of choosing the “correct” button increased, and so it quickly
came to preempt the other choices completely. The 18-year-olds, however, were much slower to adopt
the maximizing solution; before doing so they tried out a number of other patterns of responses—
predominantly variations on left-middle-right (LMR) alternations—discarding them when they failed
to work.

Weir concludes that the oldest subjects (perhaps more familiar with puzzles than with psychology
experiments) came to the experiment with an expectation that there would be a “solution” which allowed
them to make a correct choice on every trial, and only reluctantly gave up this hypothesis. Adult subjects’
introspective reports describe the experience of being in a probability-learning experiment in much this
way, as continuing attempts to out-guess the experimenter and figure out the pattern (Feldman, 1961).

The intermediate-aged children were like the adults in trying out alternation patterns—but unlike
adults in that they did not subsequently reject those patterns; rather, they continued to use them despite
the mounting evidence that they were incorrect (for some of Weir’s groups, over half the responses were
part of an LMR or RML pattern). Weir suggests that “the 7- to 10-year-old is at a point in development
where his ability to generate complex hypotheses and employ complex search strategies is growing at a
faster pace than his information-processing ability” (page 481), leaving them in the awkward situation of
being able to hypothesize patterns that they cannot property test. Thus, they continue to blindly follow
these patterns of their own creation.

Since children do not seem to follow through on the testing of the patterns they use, it is not clear
whether what they are doing can truly be called hypothesis-testing (Bogartz, 1965, 1969). However,
in older subjects, hypothesis-testing does become a common approach to the problem of learning from
imperfect data. The hypothesis-testing subject is looking for a rule which would explain the pattern of
stimuli without recourse to randomness, which is clearly preferable to one that is only right a percentage
of the time. In experiments where the data actually do follow sequential patterns, adults are quickly able
to find and follow them (Restle, 1967; Vitz & Todd, 1967).

Another high-level strategy which can lead to apparent probability matching is a reward-following,
also called the win-stay/lose-shift strategy. Subjects using this strategy would push one button as long
as it kept being correct, but whenever their guess failed, they would switch to the other possibility. This
strategy is very commonly observed in animal-training situations, and is also reminiscent of one of the
strategies attributed to children by Bever (1982) and others. Interestingly, the opposite strategy, which
could be called win-shift/lose-stay, but is also variously named negative recency, the gambler’s fallacy,
or the maturity of the chances effect, is also found in older children (Ross & Levy, 1958). This kind of
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responding reflects the assumption that random series must frequently alternate; the subject switches to
a different choice any time one choice has been correct one or more times in a row.

Reward-following, in particular, is a good example of the danger of looking only at the number of re-
sponses a subject makes to each of the choices in an experiment: at that level of analysis reward-following
looks exactly like probability-matching. However, it is clearly quite a different strategy cognitively, one
which requires no learning at all, just a single item to be kept in short-term memory until the next trial. In
general, it is difficult to deduce from a list of responses what kind of strategy a subject may be following.
As an experimenter, one can only look for evidence of particular strategies, and assume that anything
else is just random guessing. It is never possible to prove that a sequence is random and not actually
generated by some rule that was not tested.

1.1.4 Optimality

It was mentioned before that maximizing achieves the largest number of correct predictions in the stan-
dard probability-learning experiment. However, this does not necessarily mean that it is the only logical
solution to probability-learning problems—despite its name, maximizing has no exclusive claim to opti-
mality. The notion of global optimization is difficult to define in any case, and seldom seems to be the
basis of behavior (Staddon, 1980).

However, one can describe some simple situations in which several of the strategies discussed above—
probability-matching, maximization, and hypothesis-testing—can be shown to be optimal.

In the typical probability learning experiment, there is exactly one correct choice on each trial, which
is determined randomly and independently of any other trial or response, and which is shown to the
subject on each trial by means of one of the lights going on. In this simple case, the optimum strategy
is indeed maximizing—allocating all your choices to alternative that has proven correct on the largest
number of past trials.1

On the other hand, if there are sequential patterns in the data, then a maximizing solution is clearly
not optimal; what is required is some strategy that will find those patterns and follow them. The problem
domain here is too vague to permit any claims of optimality, but some sort of hypothesis-testing pattern
seems to be called for. What people actually do does not seem to be anything like an optimal search
strategy (Weir, 1964), but it is effective.

Finally, in the absence of patterns, there are situations where probability-matching turns out to be
the optimal strategy. Optimal foraging behavior has been extensively studied (see Gallistel, 1990 for a
review), and offers some examples: consider a situation where there are various possible locations that
food may be found, but there is a limited amount of food at each location. In this situation, it is desirable
for each forager to distribute its feeding to the various locations in proportion to the amount available at
each; this distribution of the load, called the ideal free distribution, minimizes the likelihood that any of
the locations will be depleted. In addition to serving the common good, it also leaves the greatest amount
of food available to each individual if the group of animals is sufficiently numerous.

An nice example of the ideal free distribution in a relatively natural setting is described by Harper
(1982): two experimenters threw pieces of bread at different rates into a pond where a group of ducks
were living. The ratio of the numbers of ducks waiting in front of each experimenter soon came to accu-
rately reflect the ratio of the rates at which they were providing food. Clearly it would have been foolish
of the ducks to “maximize” by all gathering in front of the experimenter who was more forthcoming.

In the laboratory, an analogous situation can be set up with a Fixed-Interval (FI) or Variable-Interval
(VI) Schedule of reinforcement (e.g. , Herrnstein and Vaughan, 1980). These are conditioning paradigms

1But in a slightly different experiment like Weir’s (1964), in which you can only determine if a choice would have paid off by
choosing it, things get more complex because some number of trials must be spent exploring the choices in an effort to determine
which one is most profitable; the optimality problem becomes one of deciding when to stop exploring and begin exploiting the
favorite choice. An approach to this far more complex optimality problem is described by Gittins (1989).
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where an interval of time must elapse between reinforcements of a particular behavior; in the FI sched-
ule this interval is constant, while in a VI schedule it varies randomly around some average. If two
behaviors are being taught by using independent interval schedules, then the subject must choose at each
moment which of the behaviors to perform. If both schedules allow reinforcements equally often, then
it is reasonable to simply alternate. If, on the other hand, the average times between reinforcements
are different, say one minute and ten minutes, then a better strategy is to perform the more frequently
rewarded behavior more often. However, giving up entirely on the second behavior is also a poor idea,
since that would result in missing its scheduled reinforcements.

Animals put in this situation are found to obey the Matching Law (Herrnstein, 1970): the frequency
of responses are in proportion to the frequency of reinforcements, so in the situation described above, the
animal would perform the first behavior 10 times as often as the second behavior (Schwartz & Reisberg,
1991). Optimality in this situation is difficult to define precisely, but this strategy is at least an excellent
approximation (Staddon, 1980).

Given the similarity (from the subject’s point of view) of this paradigm to the probability-learning
paradigm, perhaps it is not surprising that the same kind of responding appears in both situations. Faced
with choosing one of two occasionally-reinforced responses, a subject does not necessarily know whether
the experimenter is judging answers according to a table of random numbers, or according to a variable-
interval stopwatch. The probability-matching strategy may be a case of a behavior that is optimal in one
circumstance (e.g. , foraging) being used in a situation where it is not the best choice.

1.1.5 Models of Probability Learning

Herrnstein’s Matching Law can perhaps be called the first model of probability learning. Its basic form,
for two choices A and B, is

RA

RA + RB

=
rA

rA + rB

(1.1)

where RA and RB are the number of responses to choices A and B, and rA and rB are the number of
reinforcements following such choices (Herrnstein, 1970).

The Matching Law is actually considerably more flexible than its simplicity might suggest. For
example, it accounts for both the probability-matching and maximizing that is found in many animal
experiments. Recall that maximizing is typically found when correction trials are not used: after each
choice, the animal is rewarded if its choice was correct, or must wait for the next trial if it was incorrect.
Assume that the animal initially responds equally to the two alternatives, and that A is reinforced 75% of
the time. The animal would be rewarded on 75% of its choices of A, and 25% of its choices of B, so the
Matching Law predicts that it would begin to choose A on 75% of the trials. The increase in responses
to A, and concomitant decrease in responses to B, has the effect that an even larger proportion of the
reinforcements earned by the animal now follow responses to A: now A is being chosen 3 times more
often than B, and it is, as before, reinforced 3 times as often when it is chosen, so without changing the
setup of the experiment, the subject is now receiving 9 times as many reinforcements after choices of A

than reinforcements after choices of B. This in turn causes a further increase in choices of A, and the
animal quickly approaches complete maximizing.

In a correction-trial procedure, however, any incorrect choice is followed by a forced, and rewarded,
choice of the other stimulus. Every trial ends with a reward, and the proportion of those rewards is
fixed at 75% A to 25% B. The Matching Law predicts that in this situation the subject’s responses will
likewise be fixed at 75/25.

As we have seen, these predictions are not correct in all situations or for all subjects; many factors
besides feedback affect whether a subject will maximize, probability-match, or follow some other pat-
tern. The Matching Law does well for its simplicity, but has a number of drawbacks: its dependence
on explicit rewards, when in fact observation of probabilities is sufficient for learning (Gallistel, 1990;
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Reber & Millward, 1968); the lack of any way to account for different contexts in which events happen;
and unrealistic predictions about the early stages of learning (it predicts wild swings in the probabilities
of early responses, since when relatively few rewards have been experienced, the ratio changes sharply
with each one. Such swings are not observed, however; see Gallistel 1990).

The linear model proposed by Rescorla and Wagner (1972) is able to correct some of these problems,
due to the fact that it separates learning about the choices into separate response strengths, rather than
collapsing all the information into a single ratio. A reinforcement increases the response strength of the
most recent choice, and the ratio between the strengths of the available choices determines the likelihood
of picking them on subsequent trials. The insertion of the intermediate representation of a response
strength between the subject’s input and output allows Rescorla and Wagner to model more more closely
the actual shape of learning curves, as well as to account for the effects of non-reinforcement following
a choice. It is also possible to begin to look at situations where the choices are made in a context—ie, in
which multiple stimuli are present, each of which may influence the distribution of rewards. With suitable
assumptions about how the strengths of different items can be combined, this becomes a powerful model
of choice behavior (see, for example, Bitterman, 1986, Couvillon and Bitterman, 1991).

Adding further complexity and flexibility (and also, for the first time, non-determinism in learning),
William Estes’ Stimulus Sampling Theory (SST) takes an environment containing multiple elements as
the basic situation. Estes and his followers have constructed statistical models to account for a wide
variety of probability-learning situations, including some very elaborate variations (Estes, 1972; Estes,
1976). There are various versions of SST, but the basic premise is that each stimulus can be considered
to be made up of a set of elements. On each trial, a subset (“sample”) of these elements is noticed
by the subject, and their representations become active. Each of the elements can also be associated
with a particular action (e.g. , choosing the left button, or moving to a particular feeding location), and
the subject’s response on each trial is determined by the connections from the currently active stimulus
elements. If that response is rewarded, the active elements become associated with that response, if they
were not already.

One interesting feature of SST is that it can put the randomness of responding into the perceptual
system, not the act of choice itself: the response is wholly determined by the connections of the active
stimulus elements, but the choice of which stimulus elements are noticed on a particular trial would seem
to be a perceptual question. Combined with a mechanism of selective attention, this can be an extremely
powerful model (Bower & Hilgard, 1981).

Stimulus-Sampling Theory is quite flexible, and has been applied to a wide array of probability-
learning situations, but it still does not provide a single model that is able to account for all of the
experimental data that has been generated. One particular failure that SST shares with all of the other
models I have discussed is the lack of any account of the use of the patterned responding or hypothesis-
testing (see section 1.1.3), or even an account of its own boundary conditions, which would predict when
a subject would give up on statistical responding and begin to try out patterns.

1.1.6 Summary

I have outlined some evidence which shows that probability-learning is not a simple phenomenon.
Rather, there is a complex array of factors at play that collectively determine how a subject will respond
when presented with an array of inconsistent data. The possible styles of learning and responding in-
clude probability matching, maximizing, and compromises between those, and various forms of strategic
guessing, pattern following, and hypothesis testing.

The factors that may affect the choice between these include characteristics of subjects (their species,
age, and understanding of the situation), and of the task (the use of correction trials, reward or other
motivation, instructions, and the cognitive demand of the problem). Furthermore, these factors interact
with each other in complicated ways.
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Clearly, people have many different learning styles and strategies in their repertoire, and probability-
matching, far from being a reflex response to probabilistic data, is just one of a number of learning
tools that can be deployed when needed. The differences between adults and children can therefore be
considered as differences in the array of tools available, and the sophistication with which the proper one
for the situation can be chosen.

1.2 Language Learning

Learning from inconsistent data is also a recurrent theme in studies of language acquisition, although it
goes by different names and is not generally connected to the probability-learning studies discussed in
the previous section. However, many investigators have looked at how learners can form rules on the
basis of information that is essentially probabilistic in character. In the following descriptions of some
of these areas of research, each is approached from the viewpoint of probability learning, in an attempt
to construct a unified picture of the phenomena.

1.2.1 Overregularization

An important example in language acquisition, which has already been touched upon in the beginning of
this chapter, is overregularization: the child’s common error of using a regular rule too often, for example
using goed for the past tense of go, rather than the correct irregular form went (see Marcus et al., 1992,
for an extensive review).

A common interpretation of this finding is that children are willing to innovate linguistic forms, or
change the forms that they have heard, in order to bring them into line with their innate predisposition
to find grammatical rules. However, in this case there is an alternate interpretation, due to Singleton and
Newport (1993), which looks at the problem facing the child as a probability-learning situation: often,
say 75% of the time, an event that is in the past will be spoken of with an -ed ending on the verb; the
remaining 25% of the time, past-tense verbs have a different ending or no ending. On this view, the
child’s behavior of over-using the majority -ed ending is an example of maximizing—or perhaps more
appropriately overmatching, since children do not generally make overregularization errors 100% of the
time.

I do not want to make too much of this example, since the analogy between trials of a probability-
learning experiment and exposures to the past tense morpheme is a weak one. The exposure to past tenses
is not random; there are rules that predict the occurrence of even the irregulars. Some of these rules
may only cover a single verb, such as the idiosyncratic go-went and is-was, but they are still perfectly
consistent in the sense that there is exactly one past tense for each verb, and eventually, the child will
master all of these exception-rules. It is tempting to propose a connection between overmatching and
overgeneralizing, but before committing to this idea it would be wise to look for some cases in language
acquisition where the learner’s input is not just varied in an orderly way, but truly inconsistent.

1.2.2 Creolization

One case where a child’s language input can contain true inconsistency is when the adults in the child’s
environment are not native speakers of the language that the child is learning—as when a new language
is first being formed out of a contact vernacular, or pidgin language.

Pidgins are created by necessity in areas of contact between groups of adults who share no common
language. They are characterized by variability and inconsistency, with vocabulary items and grammati-
cal rules being borrowed from the various native languages of the speakers (Kay & Sankoff, 1974). If this
pidgin becomes the common language of the community, however, and children grow up with it as their
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native tongue, it is transformed in dramatic ways. Sankoff (1979) lists seven primary changes that have
occurred in Tok Pisin, a language of Papua New Guinea that has been undergoing such a transformation
quite recently. Some of the changes are elaborations (e.g., marking singulars and plurals, which had not
been consistently done before), while others are simplifications or streamlining (e.g. , a future marking
adverb, baimbai, is shortened to /b e/ and moves to attach to the verb: Sankoff and Laberge, 1973).

Derek Bickerton has claimed that Tok Pisin shares with all other creole languages a universal core
grammar, which is essentially the minimum requirements that children demand of their language, and
which children are willing and able to create if it does not already exist. His Language Bioprogram
Hypothesis further claims that “the most cogent explanation of this similarity is that it derives from
the structure of a species-specific program for language, genetically coded and expressed, in ways still
largely mysterious, in the structure and modes of operation of the human brain” (Bickerton, 1984, page
173).

On the other hand, Singleton and Newport suggest that the morphological and syntactic rules added
to the language may not have been made up by the children from nothing; rather, they may have been
present in the adults’ speech, but used inconsistently (Singleton and Newport, 1993; also see Sankoff
and Laberge, 1973, for relevant data). As in the case of baimbai, children may be noticing common
but inconsistent patterns, and transforming them into obligatory markers. Regardless of whether this
hypothesis can account for all of the changes that go on in creolization, it is undoubtedly the case that
many changes are of this type: a word, morpheme, or structure used somewhat frequently becomes the
obligatory element, to the exclusion of any other method of marking that meaning which might have
been used in the community.

This probabilistic character of pidgins, then, is another possible analogy to the probability-learning
paradigm. Just as in overregularization, we have a case where children’s behavior can be described as
selectively ignoring parts of their input in favor of a bias towards systematicity (Newport, 1981, 1982;
Singleton and Newport, 1993). In overregularization, this is restricted to the occasional use of a regular
rule in a novel (i.e. , incorrect) context, and decreases with time as the irregular forms are more solidly
learned, but in the case of creolization the process of selecting and systematizing is able to continue all
the way until the biases become rules, and the system becomes a new language.

1.2.3 Simon

It may be a phenomenon like creolization, but on a smaller scale, which underlies Singleton and New-
port’s (1993) findings in their study of Simon. Simon is a deaf child who learned American Sign Lan-
guage from his parents, who are non-native speakers (both learned ASL at age 15). The parents use ASL
in a manner typical of late learners: their grammar and morphology are quite reduced and inconsistent.
On a test of verbal morphology, they scored an average of only 65-70% correct. However, despite the
fact that Simon had no other ASL input from which to learn, on the same test he scored significantly
higher than his parents, and on 5 of the 7 morphemes tested his performance was indistinguishable from
the performance of children of native speakers, 90 to 95% correct.

How was it possible for Simon to surpass his language model in this way? It turns out that for most
of the morphemes tested, Simon’s parents produced the correct form in the majority of cases, as does
Simon. However, Simon very seldom produces any of the numerous errors that his parents do, so that
their 65% correct responses become 90% correct at his hands. In the one case where the parents’ most
common form was actually an incorrect handshape for the meaning, Simon also uses this (erroneous)
form consistently.
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1.3 Comparisons

Phenomena like overregularization, creolization, and the learning of language from the inconsistent us-
ages of late learners have led many researchers to the conclusion that children must have some innate
predispositions for learning language, a “Language Bioprogram” or “Language Acquisition Device.”
There is, however, another possible explanation: that children find patterns in their input, and by reg-
ularizing those patterns elevate them to the status of rules (Newport, 1981; Newport, 1982; Singleton
& Newport, 1993). Children seem biased towards systematicity, but as Newport and Singleton suggest,
this is quite analogous to the phenomenon of maximizing in non-linguistic learning, which is by no
means restricted to language. This is the perspective that I have adopted in the preceding discussion.
Overgeneralization, creolization, and language learning from impoverished input may be, at least in part,
manifestations of the child’s propensity to maximize when faced with certain kinds of inconsistent data.

The intention of this study is to test this hypothesis experimentally. If the learning phenomena under
discussion are caused by the capabilities and biases of the young learner interacting with the structure of
linguistic systems, and not by the domain of language per se, then similar phenomena ought to appear
when a child is given a non-linguistic system to learn that shares some crucial aspects of the structure of
languages.

It is, unfortunately, not clear what aspects of the structure of languages are the important ones to
include in such a system, and in the duration of an experimental session it is obviously not possible to
test very many or very complex systems. Nevertheless, it is possible to take some guesses about what
kinds of structures might be important, and at least to try a few different levels of complexity, ranging up
to a moderately complex system. A first attempt at doing this is described in the following chapter.

Since the learning problems presented to subjects in these experiments are complex, there is a corre-
spondingly wide range of possible responses, and there are several dimensions along which results can
be measured. The most straightforward of these is the accuracy with which the subjects learn to predict
elements of the system, and this accuracy data will be presented along with the procedures in chapter
2. However, as will become clear, it is also interesting to look at how internally consistent subjects are
in their use any sort of response pattern, regardless of whether that pattern is accurate or not (recall the
examples of innovation in language learning, and the minimizing behavior described in section 1.1.2).
This consistency data, presented in chapter 3, gives quite a different impression of what the children are
doing than does the accuracy data alone.

The results of these experiments suggest that children may indeed have some unique ways of reacting
to inconsistency in structured systems, even in a non-linguistic domain. Although this study is much
more exploratory than explanatory, some possible implications of the results are presented in the final
chapter, along with ideas for further research. The paradigm introduced by these experiments proved to
be quite a fruitful one, although not in the ways originally anticipated. Perhaps future inquiries along the
lines sketched here will shed some light on the question of exactly what causes rule-making behavior in
children’s learning, both in and out of the linguistic domain.
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2 Experimental Methods and Initial Results

The experiments described here are designed to look for rule-like behavior in response to imperfect
information in a non-linguistic domain. The first requirement, then, is to construct a system that is not
linguistic and is simple enough to be taught to subjects in a brief laboratory session, but, at the same
time, which is capable of including some language-like structure.

The system that used here to accomplish this is a multi-dimensional mapping between objects and
actions. The objects are colored geometric shapes, with color, shape, and size being independent dimen-
sions of variation. The actions are also organized in terms of separable dimensions: the direction, type
of path, and manner of motion. An example of a complete stimulus, then, would be a large green square,
rolling on a curved path to the right.

Two important aspects of linguistic systems are represented in miniature by this system: reference
and compositionality. Reference, in linguistics, refers to the fact that linguistic systems are connected to
the world: words can refer to concepts or physical objects. The concepts and objects, meanwhile, each
have their own scheme of organization and interconnections, so that the task of language acquisition
includes learning connections between (at least) two complex and differently-organized systems.

In these experiments, there is also a sort of reference, but in a very impoverished sense. There are two
domains taking part in the learning problem—objects and actions—and each has its own organization.
In the learning of morphology, the task is to connect morphemes to their meanings; in these experiments,
subjects learn to connect features of objects with features of actions. Thus, the form of the problem is
the same, although it is presented here in a miniature version. The object and action domains in these
experiments are extremely simple compared to the domains of morphology or semantics, but, as the data
will show, they are not trivial to learn within the constraints of the experimental session.

The second language-like aspect of the experimental task is compositionality. Linguistic units (e.g. ,
words) are made up of smaller meaningful parts (morphemes), which combine in rule-governed ways
to create complex meanings. In these experiments, it is possible to break a complete stimulus down
into smaller parts (just its color, for instance) and find a “meaning” for each part (e.g. , the color of the
stimulus might predict its direction of motion).

The learning problems in these experiments are presented as sequences of examples (with each ex-
ample comprising an object and its action), but the system to be learned is actually structured like a
simple morphology: if “the small blue star” is a like a word, then the color “blue” is like a morpheme of
that word. If all the blue objects bounce, then we can continue the analogy by saying that “bouncing” is
the meaning of the “blue” morpheme. And if this meaning combines with the meanings of the size and
shape to create the fully-specified action, then we can call it a compositional system.

In contrast, a system could also be constructed in which the particular objects had characteristic
actions, but there was no way to break them down into morpheme-like components—small blue stars
might always bounce to the left, but without there being any consistency in the way all blue objects
move. Such a system could be learned only by memorizing the behavior of each individual stimulus
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item, whereas the compositional systems used here can be learned not only by memorizing individual
stimuli, but also by analyzing the stimuli into their components, and finding the low-level regularities.

2.0.1 Independent Variables

Quality of Data The pivotal independent variable in these experiments is the data quality—whether
the sequence of examples provided to the subject perfectly reflects the underlying system, or has errors
introduced into it. We saw in section 1.2 that young language-learners are able to find (or innovate) rules
even if their input does not follow those rules consistently. Changing the consistency of the data provided
to subjects allows us to test whether the learning of an abstract system like this is affected (or unaffected)
in a similar way by inconsistency. In each experiment discussed below, the same system will be given
to several groups of subjects with differing levels of inconsistency in the data, ranging all the way from
data that perfectly follow the rules to random data that follow no rules at all. At each level, we will look
first at the subjects’ accuracy (how often did they follow the pattern that the data suggested?) and later
also at their consistency (how often did they follow any patterns at all?). This will give us an idea of how
subjects are influenced by the consistency of the data they get about a system.

Complexity of Systems Might complexity affect the subject’s reaction to inconsistent data? It is cer-
tainly plausible that a young learner, having particularly limited resources (such as memory and attention)
available, when confronted by a complex system to learn, may need to simplify the situation in any way
possible. Discarding all but the most frequent types of items in a particular category may be an effective
kind of simplification. This is a form of Elissa Newport’s Less is More hypothesis (see Newport, 1984,
1988, 1990, 1991, and Goldowsky and Newport, 1993): The limitations of the child learner may be
responsible for their strong ability to acquire languages.

If it is sheer complexity that is responsible for children’s maximizing behavior in learning languages,
though, this experiment may well be insufficiently language-like to show any maximizing at all. Lan-
guages are much richer and more complex than any system that can be taught within the time constraints
of an experimental session. However, the complexity of the system used can be manipulated within
those constraints in order to study this question. By varying the degree of complexity of the presented
system within reasonable bounds, the direction of the effect of complexity can be determined. If subjects
show a greater tendency to maximize when exposed to a more complex system, or if children maximize
more than adults when presented with the same system, it would provide a measure of support for the
speculation that the even greater complexity of languages may be what causes the maximizing outcome.

Differences in complexity may also provide a way to unify findings about maximizing in various dif-
ferent contexts. In Bever’s (1982) experiments, maximizing was found to be dramatically less common
for subjects above 2 years of age, but overregularization of morphological rules goes on nearly undimin-
ished to at least age 5 (Marcus, Pinker, Ullman, Hollander, Rosen & Xu, 1992). One could speculate that
the age difference is due to the far greater complexity of the language problem, which remains challeng-
ing long after the child has reached adult-like performance on the two-choice probability-learning task.
Indeed, Weir found that the age that shows the most maximizing is dependent on the particular problem
in question (Weir, 1964)

For these reasons, the complexity of the presented systems is manipulated in this study. The first
experiment uses a reasonably complex system, in which the objects and actions each are composed of 3
independently-varying dimensions having 3 possible values (3 × 3 × 3). The second and third experi-
ments each compare two simpler systems, a two-dimensional system (3 × 3) and a single-dimensional
system (of 3 stimuli). If complexity affects learning as Newport’s and Bever’s work suggest, then we
would expect to see more maximizing in the more complex systems.
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Age of Learners The final major variable to be examined is the age of the learners. It is known that
children approach the task of learning a language very differently than adults do (see section 1.2). This
implies that if the same mechanisms that are used in language acquisition are being recruited to do
the present task, we should find parallel differences in adults’ and children’s results. For this reason,
Experiments 2 and 3 compare adults and 6 to 8 year old children given the same problem under very
similar experimental conditions. Again, the comparison to language acquisition would lead us to suspect
more maximizing in children than adults.

2.0.2 Dependent Variables

Two major dependent variables are used to describe the data. In this chapter only accuracy will be
considered; this is the percentage of trials on which subjects pick responses that follow the underlying
system that they were exposed to—although, since the data that the subjects get to see is probabilistic, it
may not have followed that underling system with perfect consistency.

In the next chapter, however, a different metric will be proposed: consistency. This is a measure
of how well the subject followed any pattern in their responses, independent of whether that pattern
reflected the patterns in the data or not. The consistency data, and in particular comparisons of the two
measures, paint quite a different picture than the accuracy data alone. However, further discussion of this
must be postponed until after the description of the experimental procedures and initial data.

2.1 Experiment 1

In this first experiment, a methodology is introduced for teaching complex systems of mappings to sub-
jects, with varying amounts of inconsistency in the data to which the subjects are exposed. The mappings
are between a set of objects and the actions that those objects perform; the subject’s task is to be able
to predict the action given the object. An added layer of complexity is that although the stimuli are
presented individually, there are underlying regularities having to do with the dimensions of variation of
the stimuli, with each object-dimension (e.g. , shape) mapping to an action-dimension (e.g. , direction of
motion).

The basic situation is one in which the stimuli are constructed according to a perfect mapping between
objects and actions. In the condition of greatest experimental interest, however, the mappings are similar
but probabilistic; so that instead of red objects always bouncing, 76% of them bounce, and the remaining
24% are distributed evenly across the other possibilities. As a further baseline condition, for some
subjects the objects and actions are paired randomly, so that knowing the object provides no information
for predicting the action. This random condition is intended to uncover biases that subjects have toward
particular patterns of responding, independent of the data provided about the system.

It is also possible to test several different levels of consistency within a single set of stimuli, because
exceptions can be introduced into each dimension independently. The final condition, then, is Mixed. To
illustrate, in one of the Mixed systems used, shapes mapped onto directions of motion perfectly, sizes
mapped onto paths with some exceptions, and colors and manners of motion varied randomly and inde-
pendently. This allows within-subject comparisons of the effect of consistency, as well as allowing a test
of whether subjects treat the different dimensions as separate problems, or if the interactions between di-
mensions that are mixed in this way affect the manner in which each of the component learning problems
is approached.

Approximately 1/4 of the possible stimuli in this and following experiments are not used during the
training phase of the experiment, but saved for a generalization test: for example, the subject may never
be shown a small red square until the last block of the experiment. However, if the subject has learned
rules about the behavior of small objects, red objects, and square objects, they should be able to apply
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Figure 2.1: Three of the objects used for stimuli. They ranged from 1 to 4cm across, as illustrated, and
came in the three shapes and three colors shown. All 27 possible combinations of these features were
used in Experiment 1.

these to the case of the small red square, and correctly guess its type of motion. This result would
indicate that the subject had abstracted the rules relating dimensions of the stimuli; whereas an inability
to do this generalization (while still performing well on the trained stimuli) would suggest the subject
had memorized individual stimuli without extracting the dimensional rules.

2.1.1 Subjects

The subjects for this experiment were 36 (22 male, 14 female) University of Rochester undergraduates
enrolled in an introductory Psychology class, participating as part of a course requirement. Ages ranged
from 18 to 21 years. They were tested individually by the experimenter.

2.1.2 Stimuli

All of the stimulus presentation and response collection was implemented using an Apple Macintosh Si
microcomputer, running a special-purpose program written in the C programming language.

The stimuli were colored objects moving in various ways on the white background of the computer’s
screen. The objects varied in three of their attributes (or dimensions): color, shape, and size. Each
dimension has three possible values: color was red, green, or blue; shape was square, star, or plus; and
the size was 1, 2, or 4cm across. There are 27 possible objects that can be created by combining these
dimensions; figure 2.1 illustrates a few examples.

On each trial, one of these objects was presented, engaged in one of various actions. Each action was
a way of moving from the center of the screen to the periphery. The actions, like the objects, differed in
three dimensions: manner of motion, direction of motion, and shape of the path. Each of the dimensions
had three values: the manner of motion was rolling, bouncing, or stop-and-go (moving at double the
average speed for 333ms, then stopping for 333ms); the (initial) direction of motion was 90◦, 200◦, or
290◦ (measuring clockwise from straight up); and the path was linear, curved, or angled (straight for 3/4
of its travel, then taking a 90◦ bend to the right). There are thus also 27 possible actions; see figure 2.2
for examples.

Although one could construct 729 (27 × 27) different stimuli by combining the objects with the
actions, in these experiments the stimuli were constructed more selectively, with a 1:1 mapping of objects
to actions being the target system that subjects were supposed to learn. Each of the 27 objects, in other
words, was paired with a single, specific action (although different for different subjects), and the pairing
was the information subjects were tested on. The systems were constructed as follows:
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Figure 2.2: Three of the actions used for stimuli. (a) Diagonal, angled, bouncing; (b) downward, linear,
rolling; (c) rightward, curved, stop-and-go motion. Each path begins at the central point and starts
its motion in one of the three standard directions; the curve and angle eventually deviate from their
initial direction. The schematic representations of the actions shown here are the same ones that were
manipulated by Experiment 1 subjects to indicate their responses.

• Each object dimension was connected with an action dimension. This was done in three different
ways in order to counterbalance any effects of the differing physical properties of the dimensions.
Thus for one-third of the subjects, the size of a stimulus was related to its direction of motion; for
another third, to its path; and for the rest, to its manner of motion.

• Each value on each object dimension was connected to a value on its corresponding action dimen-
sion. This, also, was done in three different ways as a counterbalancing measure: for example,
for one-third of the subjects for whom size was related to direction, small corresponded to left, for
another third medium corresponded to left, and for the rest, large corresponded to left.

The three different ways of matching up the dimensions and the three different ways of matching up
the values on those dimensions define 9 different variants of the mapping system. One of these variants
was given to each of the 9 subjects in each group. However, all 9 subjects in each group experienced the
same type of mapping, as described below.

Of the 27 object/action stimuli in the system, 6 were reserved for the generalization test and were
only presented in the last phase of the experiment. The remaining 21 stimuli were presented once in each
block, with their order randomized independently for each block and subject.

Subjects in the Perfect group were exposed to this set of stimuli, exactly as described, for the entire
experiment. For the Perfect-condition subjects, then, the stimuli illustrated a 100% consistent mapping
between each of the object dimensions and its corresponding action dimension.

For subjects in the Imperfect group, however, some of the stimuli were modified. For each of the
three action dimensions, five stimuli were chosen from each block of 21, and that dimension of the action
of each of those stimuli was changed to one of the two values that did not follow the pattern. Thus 24%
(5/21) of the stimuli had a mapping inconsistent with the pattern on each dimension, while 76% (16/21)
were left with the normal mapping. These random mutations were done independently on the three
dimensions, which resulted in an average total of 44% of the stimuli having all three of their dimensions
following the pattern as originally described; 42% of the stimuli having one dimension different from
that which the pattern would predict, 13% differing in two dimensions, and the remaining 1% having all
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their dimensions different from their original values. The mutations were produced in such a way that
each particular stimulus object had its action altered just as often as each of the others: no stimulus was
more or less reliable than any other.

For subjects in the Random group, there was no correlation between the objects and the actions
that they were shown. This disorder was created by an exaggeration of the means described above: for
each dimension and block, 14 stimuli were mutated. Thus, if squares were originally associated with
rightward motion, 7 of the 21 squares retained this rightward motion, 7 were altered to move left, and 7
to move down. This resulted in the stimuli giving no information about object-to-action mappings.

The fourth group, Mixed subjects, were given one object dimension that was perfectly correlated
with an action dimension, one that was imperfectly correlated, and one that was random. The idea of
this condition was to see whether learning would proceed on each dimension the way it did in the non-
Mixed conditions, or, alternatively, if they would interfere or interact with each other. If there were no
interaction, it would permit within-subjects examination of the effect of data quality.

2.1.3 Procedure

The subjects were randomly divided into the four groups (Perfect, Imperfect, Random, and Mixed) with
the stimuli presented to each group differing as described above. Each subject was also assigned to one
of the nine different systems that counterbalanced the particular dimensions and values that mapped onto
each other. The instructions and all other procedures were the same for all subjects.

The experiment was divided into four sections: observation, pretest, feedback trials, and post-test. In
the observation section, subjects were shown a sequence of examples of the objects performing actions.
The instructions were to “watch carefully, and remember as much as you can about the objects you
see, and the way that each of them moves.” Observation trials have been found by Reber and Millward
(1968) to be useful for giving probability-learning subjects a lot of information quickly, and pilot tests
had shown them to be useful in this task as well. There were 6 blocks (126 trials) of observation. Each
block took just over 3 minutes, and subjects were allowed to pause for as long as they liked after each
block.

In the pretest section, the subject was shown each object (presented motionlessly in the center of
the screen) and asked to guess how that object would move, based on what they saw in the observation
section. Responses were made by means of a 10-key keyboard, which had a button for each of the
possible directions, paths, and manners of motion, and an “OK” key. As they made their choice, it was
schematically represented on the screen with diagrams like those shown in figure 2.2. They were free to
self-correct until they pressed OK, at which point the screen was cleared and the next trial would begin.
No feedback on the accuracy of the guess was provided. There were 2 blocks (42 trials) in the pretest.

Following this there were feedback trials, which proceeded identically to the pretest trials until the
OK button was pressed. At this point, depending on their response, either “Yes!” or “Close” would be
presented in the center of the screen for 333ms, or the entire screen would be flashed black for the same
period of time to designate an incorrect response. A “Close” response was defined as having some but
not all of the dimensions correct. Following this feedback, the correct answer was shown, in the same
manner as it had been shown during the observation trials (except that the representation of a close or
correct guess would remain on the screen for comparison with the actual action). There were 4 blocks of
feedback trials (84 trials).

Finally, the post-test was identical to the pretest, except that it included the generalization stimuli,
which had never been presented or tested before. Two blocks (54 trials) were in the post-test. Most
subjects completed the entire experiment in between 60 and 75 minutes.
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Figure 2.3: Results of Experiment 1, non-mixed conditions. Graphs show the proportion of accurate
responses in each block, averaged for all subjects in the non-mixed conditions. Six blocks of observation
trials preceded the first plotted point (“pretest”). Blocks labeled F1–F4 used the feedback procedure.
The post-test and generalization trials, though plotted separately, were intermixed in the final test sec-
tion. Error bars show one standard error above and below the mean. The line labeled “PM” shows
the Imperfect-condition results that would be expected if subjects were probability-matching; the line
labeled “chance” represents the expected accuracy of random guessing.

2.1.4 Results: Accuracy

Non-mixed conditions Figure 2.3 shows the initial results from the Perfect, Imperfect, and Random
conditions. The independent variable is the proportion of responses that agree with the mapping relation
that was used in constructing the stimuli. Although I call this accuracy, remember that in the non-Perfect
conditions the subject’s feedback may have indicated that the response was wrong. On the trials that
were exceptions to the underlying pattern, the subject’s feedback indicated whether the subject matched
the exceptional form, but the accuracy score analyzed here measures whether the subject matched the
underlying form. Only for the Perfect condition do the two coincide. For the Random condition, what
counts as an accurate response is arbitrary, since the underlying pattern was no better a description of the
data than any other pattern one might invent. However, for consistency in scoring, responses matching
the underlying pattern are still considered correct.

In order to evaluate differences in learning by the subjects, the results from the pretest and post-test
were analyzed by means of analyses of variance (ANOVAs). The first was a 3 conditions × 3 action-
dimensions × 2 test blocks design. Feedback blocks were not included in the analyses presented here,
because of the different procedure used for them, but it is clear from figure 2.3 that subjects’ responses
in the feedback sections were quite comparable to those measured in the test blocks.

All main effects and two interactions—condition × block and dimension × block—showed signif-
icant differences. The strongest effect was that of condition (F2,24 = 54.1, p < .001): the Perfect
group was most accurate (83% overall), then Imperfect (46%), and finally Random (32%). Specific
comparisons confirmed that all groups differed significantly from one another, both in the pretest and the
post-test (the smallest difference is Imperfect vs. Random in the pretest, for which F1,24 = 5.0, p < .05)

The effect of block was significant (F1,24 = 6.7, p < .05), and its interaction with condition (F2,24 =

5.9, p < .01) showed that the groups followed different learning curves. An analysis of the simple main
effects of block for each group showed significant learning over blocks only in the Perfect condition
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(F1,8 = 14.8, p < .01). Average scores in that condition improved from 77% in the pretest (range
53–100%) to 89% in the post-test (range 66–100%). Two out of 9 subjects were above 90% in the
pretest, and 6/9 in the post-test. Apparently learning the system was quite difficult, however, because the
remaining three subjects did not ever reach truly consistent responding despite being shown and trained
on perfectly consistent patterns.

The Imperfect group had great difficulty learning the system, with scores always below the probability-
matching level (the range from the lowest subject’s worst block to the best block of the best subject,
including feedback blocks, is 30–71%). There is no improvement over blocks.

Finally, in the Random control group, the responses matched the arbitrary pattern which was called
“accurate” about as often as chance would predict, for all subjects and blocks.

The main effect of the action-feature dimension (that is, accuracies of subjects’ predictions of di-
rection vs. path vs. manner of motion) was significant (F2,48 = 4.3, p < .05), as was its interaction
with condition (F4,48 = 2.9, p < .05). Looking at the effect of the action-dimension in each condition
separately, there was only a significant difference in the Imperfect condition (F2,16 = 9.2, p < 0.01). In
this group subjects were more accurate predicting directions (60%) than manners (42%), which in turn
were better predicted than paths (38%). This may reflect the differing salience of the three, or the fact
that direction and manner were clear from the beginning of motion, whereas indication of the “angle”
path (and to a lesser extent, “curve”) was delayed until the change in direction could be seen. In the other
groups this effect was not significant, probably because of ceiling effects in the Perfect condition, and
random guessing for the Random group.

A second ANOVA was required to test whether the object-feature dimensions differed in their ability
to be used as predictors, since this variable is entirely confounded with the action-feature used above.
An ANOVA identical to the previous one, except substituting object-features for action-features, showed
no significant effects involving the new variable.

Subjects also proved to be unperturbed by the generalization trials; accuracy on these was 55%
overall, compared with 54% on the trained stimuli. An ANOVA of 3 conditions × 3 action features × 2
types (trained and generalization) was run on the post-test data, and confirmed that there were no effects
or interactions involving type.

Mixed Condition The data from the Mixed-condition subjects was analyzed separately. Performance
graphs are shown in figure 2.4. This graph is analogous to figure 2.3, except that now there are only 9
subjects in all, and each contributed to all three curves.

In general, the average levels of performance are similar to the non-mixed conditions, but variances
are larger. This is not only due to the smaller number of subjects, but also to particularly large individual
differences in subjects’ response to this peculiar condition. There are two subjects who apparently were
not able to separate out what was consistent from what was not, and remain at chance on all three
dimensions. In contrast, one subject ended up maximizing the imperfect dimension (responding with
100% consistency in the post-test despite the inconsistency of the data in the observation and training
blocks). Thus, the mixing of the conditions did appear to lead the subjects to approach each dimension
differently than they would have if had been presented as part of one of the non-mixed conditions.

An ANOVA of 2 blocks× 3 probability-levels (the within-subjects equivalent of the “condition” factor
in the non-mixed analysis) showed a significant effect only of probability-level (F2,16 = 11.0, p < .001).
The improvement over blocks was only marginal (F1,8 = 4.7, p < .10).

2.1.5 Discussion

The mapping relationship turned out to be more difficult for subjects to learn than had been expected,
even when they were given perfect information. The majority of subjects fell short of the level of
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Figure 2.4: Results of Experiment 1, Mixed condition. The proportion of accurate responses over time,
for the 9 subjects in this condition. Each subject had one perfect, one imperfect, and one random di-
mension pair; the three curves show the average over all 9 subjects of the corresponding dimensional
accuracies. Error bars show one standard error above and below the mean. The “Post-test” and “Gener-
alization” trials, though plotted separately, were intermixed in the final test section.

probability-matching: their performance curves were bounded between chance and the data’s consis-
tency. Since few subjects ever reached the level of probability-matching, it is not possible to answer the
question of whether a matching or maximizing strategy would be preferred on this kind of system. The
results of this experiment proved useful mainly in suggesting improvements on the paradigm, which are
incorporated into Experiments 2 and 3.

First, there were some hints that matching or maximizing might be used if the problem were somehow
made simpler. In the current experiment, calculating accuracy for each of the three dimensions separately
revealed that several subjects maximized a subpart of the problem: one subject responded according to
a shape-to-direction pattern on 100% of the trials, and two with 85% accurate color-to-direction patterns
in the post-test. None of these subjects scored above 60% on either of the other dimensions, however.

One way of attempting to find out about the use or non-use of maximizing strategies would be to
give subjects more exposure to the systems by continuing the experiment for a longer period of time.
However, it is not clear that this would help, since for the non-Perfect groups there is no indication
that any learning occurred after the initial set of observation trials. This seemed likely to be due to the
confusing nature of inconsistent feedback: the same guess in the same context can be called correct on
some trials, and wrong on others. Pilot data and subjects’ reports suggested that this was considerably
more confusing and frustrating than simply observing inconsistent patterns. Thus, in later experiments
the feedback trials were eliminated in favor of increased numbers of observation trials.

The generalization trials demonstrate that those subjects who were successful in finding the patterns
did so by finding dimensional mappings, not by memorizing individual stimuli. This is supported by
subjects’ reports during debriefing after the experiment; most were surprised to be told that there were
stimuli in the last block that had not appeared before.

However, the results of the Mixed condition suggest that the dimensions are not considered com-
pletely separately; the presence of some randomness in other dimensions apparently caused the perfect
dimension to be learned more slowly—and not at all by some subjects. Compare the learning curve for
the perfect dimension in figure 2.4 to the learning curve for the Perfect-condition subjects in figure 2.3.
The two curves represent subjects’ responses to the same rule being learned from the same data, with the
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only difference being the context (the other two dimensions) in which that data is presented. However,
the resulting levels of accuracy seem quite different.

The fact that the Mixed condition did not show statistically significant differences between learning
curves like those found in the non-mixed conditions suggests that the Mixed condition is not a beneficial
way of studying learning within this paradigm: the increase in statistical power from using within-
subjects comparisons is more than offset by the increased between-subject variability caused by different
reactions to the confusing array of stimuli. Although it would be interesting to pursue the effects of
mixed probability levels, these specific effects are not of central interest to this project. Thus, it was
decided to use only non-mixed conditions in the following experiments.

Experiment 1 thus demonstrates the feasibility of this paradigm for studying the questions of interest,
but also suggests some procedural modifications, which were employed in the remaining experiments.
Experiment 2 pursues these questions with adults, but employing entirely non-mixed conditions, simpler
systems, and longer observational learning with no feedback trials. Experiment 3 employs the same
procedures with children.

2.2 Experiment 2

In the second experiment, the search for rule-governed behavior is pursued with simpler systems and
simpler presentation. By scaling down the complexity, it was hoped that subjects would easily learn the
perfect version of the system, and in the imperfect conditions would absorb enough information to either
match the probabilities or form rules.

There were several differences in procedure from Experiment 1, all of which were designed to make
the subjects’ task easier:

• The system is smaller: subjects were shown objects and actions that varied in one or two (rather
than three) dimensions. Thus, there are only 3 (“small” system) or 9 (“medium” system) objects
engaging in the same number of actions, as compared to the large 27-object system of Experi-
ment 1.

• Observation trials were used instead of feedback trials, which had proven ineffective in the Imper-
fect condition of Experiment 1.

• More presentations of each stimulus were used. Overall, subjects in this experiment were given
378 observation trials, as compared to 126 observation trials plus 84 feedback trials in Experi-
ment 1. This is over 5 times as many presentations of each stimulus for the medium system, and
over 12 times as many for the small system. The increase was made possible without increasing
the total time required for the experiment by the use of observation instead of feedback trials, fewer
stimuli, and a slightly briefer stimulus presentation.

• The task was object prediction instead of action prediction, which allowed for much simpler re-
sponses: instead of requiring multi-key manipulations of a schematically-represented action, in
this experiment subjects simply selected one of an array of response keys, each of which was
labeled with a colored shape.

• Catch trials, in which subjects were asked to recall the immediately preceding observation trial,
were used in order to allow the identification of subjects who were simply not paying attention or
didn’t understand the task.
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2.2.1 Subjects

The subjects were 29 University of Rochester undergraduates (13 male, 16 female, aged 18–22 years),
recruited and run in the same manner as the subjects in Experiment 1. No subject participated in both
experiments.1

2.2.2 Stimuli

The “size” and “path” dimensions were not used in this experiment, since only 9 stimuli were needed
and those dimensions had been the least well learned in Experiment 1. The size of all the stimuli in the
current experiment is 2cm, and the path of movement always linear.

Two groups of subjects got medium-sized systems, with objects varying in color and shape and
actions varying in direction and manner of motion. Seven of the 9 possible stimuli were used for training,
and two reserved for the generalization tests. The other subjects were given small systems, in which the
objects and actions had only one dimension of variation: objects varied either only in color or only in
shape, and actions either only in direction or only in manner. The three possible stimuli formed the
training set. With only one dimension of variation, it was not possible to have generalization stimuli in
the small systems.

For counterbalancing, in medium systems, the two object-dimensions were mapped onto the two
action-dimensions in both of the possible ways. For small systems, there are four combinations of
dimensions possible: shape–direction, shape–manner, color–direction, and color–manner. When color
was not used, all stimuli defaulted to color being red; shape, likewise, defaulted to square; direction to
left; and manner of motion to smooth (steady sliding) motion. As before, three counterbalanced ways of
mapping the values within dimensions were used.

The subjects in the medium systems were either given perfect or imperfect data. The Medium Perfect
condition had 100% consistency of mapping between the 2 object dimensions and the 2 action dimen-
sions. The Imperfect condition had an overall consistency of 71%, created by introducing two exceptions
on each object dimension in each group of 7 stimuli.

In the small systems, subjects were either given imperfect (71%) or random (33%) mappings between
the single object and action dimensions which varied over stimuli. The 71% consistency was created by
changing sometimes one and sometimes two of the trials in each set of three, while the Small Random
condition was achieved by always changing 2 of the 3.

The trials were again randomly ordered into sequences, independently for each subject and block,
subject to two restrictions: the same action could never follow itself, and each of the distinct stimuli had
to be presented before any one could be presented again. In the conditions with exceptions, stimuli with
identical objects (but not actions) did occasionally follow one another; this was unavoidable because of
the second restriction. No restrictions of this sort had been necessary in Experiment 1 because the much
larger number of stimuli made sequential repetitions unlikely to happen.

The design of Experiment 2 did not contain the Small Perfect and Medium Random conditions which
could have completed a factorial design. The former was deemed unnecessary on the expectation that
subjects in the Medium Perfect system would already be at ceiling in their performance. This expectation
was confirmed. Since subjects were able to respond accurately on nearly every trial for 7 stimuli, it seems
fair to assume they they could have done the same for 3. The Random conditions, conversely, were
designed to test for biases that subjects may have in responding to the stimuli, which are unconnected
to any patterns in the data. Such response biases should therefore show up regardless of the system
presented, but would be presumably be more difficult to find and more variable between subjects if the
space of stimuli and possible responses is enlarged. If there are no such biases, then one would expect

1One tried.
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responses to be distributed evenly across all possible responses, resulting in close to 33% accuracy for
all subjects, as was found in Experiment 1.

2.2.3 Procedure

The equipment used was the same as in Experiment 1, except for the response choices. In this experiment
9 response keys were available, each labeled with a single colored object: red square, green square, blue
square, red plus, and so forth, arrayed in a 3 × 3 matrix.

The experiment consisted of alternating observation and test blocks. The observation trials were
identical to those in Experiment 1, except that the distance that the stimuli traveled along their trajectory
was slightly decreased (the difference was not visually obvious with the linear trajectory, but it decreased
the length of each observation trial from approximately 9 seconds to 7).

Also, one of the observation trials in each group of seven (medium systems) or one in every third
group of three (small) was designated a catch trial. In catch trials, after completing the observation as
normal, the subject was unexpectedly presented with a question mark, and had to pick the response key
that pictured the object last seen. No feedback was given on catch trials.

In the test trials, subjects were presented with a black question mark, moving with one of the same
directions and/or manners of motion that had been used by the observation items. Subjects were told that
the question marks were objects of the kind that they had previously seen, but “their shape and color are
hidden,” and they should “guess which shape and color it was” by pressing one of the response keys.

There were 126 stimuli in each of the three observation blocks (18 groups of 7, or 42 groups of 3),2

and 54 stimuli in each of 3 test blocks (6 groups of 9, or 8 groups of 3); the subject was allowed a break
after each 21 stimuli.

2.2.4 Results: Accuracy

Catch Trials No subject made errors on more than 6 of the 30 catch trials, so no subjects’ data were
rejected on that basis. The average was 1.4 errors, or 95% correct on catch trials.

Accuracy Figure 2.5 presents mean learning curves for subjects in the various conditions. As ex-
pected, subjects in the Medium Perfect condition were easily able to learn which objects were associated
with which actions (the overall average on trained trials was 97%). The aggregate scores for the Imper-
fect conditions approached the probability-matching level, and the Random condition was close to the
expected chance responding.

The initial analysis of the accuracy scores was accomplished, similarly to Experiment 1, by analysis
of variance methods. First, the overall effects of the condition and block were analyzed with a 4 con-
ditions × 3 blocks ANOVA; only the main effect of condition (F3,25 = 22.7, p < .001) was significant.
Specific comparisons between the conditions showed that the Medium Perfect condition was signifi-
cantly higher than either of the Imperfect conditions (F1,25 = 13.3, p < .01) which in turn were higher
than the Small Random condition (F1,25 = 15.4, p < .001), but the two imperfect conditions were not
different from each other (F < 1).

2An exception was made for the Medium Perfect condition, however, in which it was noted that subjects were already at ceiling
in far less than the full 54 observation blocks; these subjects were only required to complete half that number. As should be clear
from the data presented here, this could not have affected the results, since they scored nearly perfectly in all tests despite the
smaller number of observations.
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Figure 2.5: Results of Experiment 2. Average accuracy for all subjects by block, for each of the 4
conditions. The solid marks are medium conditions, empty marks are small conditions. The generaliza-
tion tests (medium conditions only) are shown separately, by the colored curves. For comparison, the
dotted horizontal lines show the chance level of accuracy, and dot-dash lines show theoretical probability-
matching levels for each level of data quality.

In the last block, the mean accuracies of the imperfect conditions closely approximated the probability-
matching level of 71%. However, it may not be accurate to simply state that subjects were probability-
matching, since there were large individual differences. In fact, the individual data were strongly reminis-
cent of Experiment 1, with the majority of subjects’ scores confined between chance and the probability-
matching level, despite the simplicity of this system.

In the Medium Imperfect condition, the overall average accuracy was 61%. Two subjects (2MI3A and
2MI4C)3 were more consistent than their data, reaching 98% and 81% accurate responding, respectively.
Another two maximized single dimensions: 2MI1B reached 87% accuracy on one dimension (direction–
shape), but stayed under 40% on the other (manner–color), while 2MI4C scored 61% on manner–shape
and 100% on direction–color in the last block. The remaining 3 subjects for the most part remained in
the 40–60% range for all blocks.

In Small Imperfect the overall average was 66%, with even more variability between subjects. Four
subjects maximized by the last block, but two remained near chance, with the remaining two falling in
between. Thus, despite the coincidence of the group mean with the probability-matching level, it does
not look like there is a strong tendency for subjects to probability-match. Rather, most subjects either
maximize, or perform somewhat below probability-matching.

The final condition, Small Random, produced some surprises. Three subjects adopted rule-like re-
sponse strategies in response to the random data. These patterns happened to disagree on each of the
stimuli with the arbitrary “correct” response, so they showed up as accuracies of (or near) 0, and affect
the overall average little. However, as will become clear later, this turned out to be a very important effect
(see the next chapter). The discovery of this phenomenon prompted a re-analysis of the data in terms of
consistency rather than accuracy, and a comparison between these subjects and the children tested on a
similar system in Experiment 3. This will be taken up again in the next chapter, after the procedures and
basic data of Experiment 3 have been presented. As far as accuracy data are concerned, for the majority

3The codes used to designate subjects are constructed from the experiment number, the complexity and data quality of the
condition, a number designating how the object and action dimensions were mapped onto each other, and a final letter designating
how the values within each dimension were mapped.
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of Small Random subjects performance was close to the random guessing that was expected; the overall
average accuracy was 30%.

Generalization For the Medium conditions only, the generalization trials were compared to trained
stimuli with an ANOVA of 2 conditions × 3 blocks × 2 types. The condition (F1,12 = 29.0, p < .001)
and type (F1,12 = 7.8, p < .05) variables both had significant main effects, but their interaction was
not significant: trained stimuli were more accurately responded to than generalization stimuli in both the
Medium Perfect and Medium Imperfect conditions.

This result may be misleading, however, since inspection of the data reveals that the generalization
decrement in the Perfect condition (90% generalization vs. 97% trained) was primarily caused by a
single subject (2MP4A), whose generalization accuracy was 50%. Excluding this subject, the average
for generalization trials rises to 96%, with trained trials remaining at 97% accuracy.

The Medium Imperfect subjects, on the other hand, all scored lower on the generalization than the
trained stimuli; average accuracies were 48% and 65% respectively. In this case it is not the result of a
small number of subjects; there was some noticeable decrement for every subject in the group.

In Experiment 1, there was no detectable difference between trained and generalization stimuli. How-
ever, in the current experiment the combination of a small number of stimuli and imperfect data appar-
ently led subjects to respond based on information about the individual stimuli, rather than about the
dimensions of variation.

Subject Variables In order to test whether there were any reliable differences in subjects’ scores
caused by various characteristics of the subjects, a multiple-regression fit of the mean accuracy scores
was attempted using the variables gender, handedness, and age, as well as indicator variables for the
conditions. The Small Random condition was not included in the analysis, since the accuracy scores in
that condition are arbitrary. Each variable was tested to see if it significantly improved the prediction of
accuracy scores, after taking into account the effects of all the other variables.

As was expected, the indicator variable for the Medium Perfect condition was significant (F1,16 =

9.8, p < .01). No other variable attained significance, although age was marginal (F1,16 = 3.4, p < .10),
with the best fit line showing an increase of 6% in accuracy per year of age.

Each subject had been asked both whether they were left-handed and whether any members of their
immediate family were left-handed. Separate analyses were run using these as separate variables, or
combined into a single score (nonzero if the subject either was left handed or had left-handed relatives),
but had no effect in either case.

2.2.5 Discussion

The results of this experiment, and comparisons with Experiment 1, show that a compositional system of
mapping relations can be taught to subjects by means of an observation-test procedure in a small number
of trials (most of subjects’ learning, in fact, occurred in the first block, which is important for designing
a version of this experiment that is short enough to run with children).

Subjects in the Medium Perfect condition performed nearly perfectly, even in the first test block (after
only 63 observation trials). Thus, the complexity of the systems used would appear to be easily within
the grasp of subjects. This is a strong difference from Experiment 1, where even the Perfect condition
proved difficult for many subjects.

However, introducing exceptions into the observation data had a severe effect on accuracy. Of the
Medium Imperfect subjects, only one maximized, while the rest remained below the matching level,
not following any readily-classifiable response strategy. Even in the simpler Small Imperfect condition,
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after 126 exposures to each of just three shapes and actions, only about half the subjects maximized, and
several still remained near chance levels of responding.

Thus, many adult learners of these systems do not seem to be able to overlook impoverished data,
or even completely accept it as a probability-learning situation. Rather, they appear to follow the basic
probabilistic structure, but with a lot of noise or guessing responses diluting the patterns. This is the
same pattern that had been seen in Experiment 1; replacing feedback trials with many more observation
trials and the other simplifications made did not seem to improve the average very much.

Also, subjects in the imperfect conditions appear to have learned what they learned by memorizing
the behavior of particular stimuli, rather than learning generalizations about the dimensions. This is
supported by the large difference between the trained and generalization stimuli in the Medium Imperfect
condition (and one of the subjects in Medium Perfect).

The most important result of this experiment is the strong effect of data quality on adults’ accuracy.
There also appears to be an effect of changing the complexity from the very complex Experiment 1 to the
more moderate systems used here, but there is no detectable difference between the medium and small
systems. Of the three major variables we set out to explore, two—data quality and system complexity—
have been considered so far. Thus, Experiment 3 moves on to the third major variable, the age of the
learner.

2.3 Experiment 3

This experiment uses the same procedure to compare the responses of first-grade children to those ob-
tained from adults. The stability of adults’ performance—as shown by the lack of significant learning
after the first block in any condition of Experiment 2—was taken to be an encouraging sign that the
paradigm could be useful, and results roughly comparable, even with the smaller number of trials possi-
ble to include within the attention span of a 7-year-old. The methods and stimuli here are very similar to
those used in Experiment 2, except for the length of the experimental session and some minor changes
designed to make the most of the shorter time available.

In response to some surprising data that came out of the first few days of testing, several additional
conditions were run in this experiment. Thus, some of the conditions to be described are near replications
of Experiment 2, while others have not been tried with adults.

2.3.1 Subjects

The subjects were 69 children (38 male, 31 female) enrolled in first grade classrooms of the Brookview
and Listwood schools in Irondequoit, NY—both public elementary schools in a middle-class suburban
school district. The median age was 7 years, 2 months (range 6;6–8;9). Two additional subjects partici-
pated in the study, but were not able to complete the experiment due to a scheduling error.

2.3.2 Stimuli

The stimuli were the same as those used in Experiment 2. The conditions used were Small Perfect,
Medium Perfect, Small Near-Perfect (85% consistent data), Small Imperfect (71%), Medium Imperfect
(71%), Small Random, and Medium Random. A Mixed condition (100%/71%) was started, but not
enough subjects were available to complete it.

Dimensions and values were counterbalanced as in Experiment 2, but the restrictions on the random
order were changed: in this experiment the overriding rule was that no two stimuli whose objects or
actions were identical could follow one another.
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2.3.3 Procedure

The equipment setup was the same as in Experiment 2, but an additional computer was used so that two
subjects could be run at once; this was a Macintosh LC when running at one school and a Macintosh
LC575 at the other. The program’s timing was adjusted to compensate for the different processor speeds
of the three machines, so that trials would take the same amount of time for all subjects.

Subjects were run two at a time in a quiet room in their school. They were seated at the computers
such that they could see only their own screens, but the pairs were given instructions together and ran
simultaneously. The experimenter remained in the room, seated between the subjects, and started the
two computers at the beginning of each block. After completing the experiment each subject received a
small reward (a drawing and a sticker).

As in Experiment 2, the experiment consisted of 3 observation blocks alternating with 3 test blocks,
but in this experiment the observation blocks contained only 42 trials, and the test blocks 27 trials each.
The number of observation trials in the entire experiment was thus equal to the number of trials in
the first observation block of Experiment 2, and each of the test blocks was half the length of one of
Experiment 2’s test blocks. Since each block was so short, no breaks were needed except between
blocks. The entire experiment lasted approximately 20 minutes.

2.3.4 Results: Accuracy

Catch trials Subjects in the small conditions averaged 3.7 errors out of 15 catch trials (75% correct),
while medium subjects averaged 4.8 errors out of their 19 catch trials (also 75% correct). Seven subjects
got 1/3 or less of the catch trials correct, which is chance performance (two in small conditions, with
10 errors each, and five in medium conditions with 13 to 16 errors). Their data were not included in
the analyses, and other subjects were run in their place, since it was assumed that they either had not
understood the procedure or were not attending to the experiment. The remaining subjects average
catch-trial accuracies were 78% (small) and 84% (medium).

Subsequent inspection of the discarded data, however, did not show any obvious systematic differ-
ences between the subjects who missed many catch trials and those who did not. Average accuracy of
the replaced subjects in the small conditions seemed lower than the overall average (31% vs. 46%), but
there was no correlation, including all groups of subjects, however, between number of catch-trial errors
and accuracy scores (r = .04).

Accuracy Figure 2.6 presents the learning curves for subjects in the seven non-mixed conditions of
Experiment 3. Overall, their level of mastery of the systems presented was considerably lower than
adults given the same systems. In fact, the children’s overall scores on the small, 3-stimulus systems
are similar to the adults’ means for the largest system (the 27-stimulus system of Experiment 1). Initial
analyses showed overall averages for both Perfect groups to be significantly above chance (Medium:
t7 = 3.3, p < .05; Small: t7 = 3.3, p < .05), and the Small Imperfect group marginally above chance
(t7 = 2.1, p < .10). The Small Random group was marginally below chance (t7 = −1.9, p < .10);
since the response scored as correct was arbitrary for the Random groups, this can be taken simply as an
indication of consistent responding, and as such will be further explored in chapter 3.

Ignoring for now the Near-Perfect condition, the other six groups were analyzed as a factorial design
crossing complexity and data quality. Thus, an ANOVA of 2 system sizes × 3 levels of data quality ×

3 blocks was run. The main effect of data quality (F2,42 = 12.3, p < .001) and the interaction of data
quality with block (F4,84 = 2.7, p < .05) were the only significant effects. The interaction is due to
an improvement in accuracy scores over blocks for the Perfect conditions, and the lack of improvement
in the Imperfect and Random conditions (the simple main effect of block for Perfect conditions only is
F2,28 = 4.7, p < .05; for Imperfect and Random, F < 1). Accuracy in the Perfect conditions was higher
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Figure 2.6: Results of Experiment 3. Average accuracy for all subjects by condition, over blocks. The
graphs show diminishing levels of data quality; within each, the outlined marks are small systems and
the filled marks are medium systems. The colored curves are the results on generalization trials.

than in Imperfect for blocks 2 (F1,42 = 7.1, p < .05) and 3 (F = 11.4, p < .01). The difference between
the Imperfect and Random conditions was significant in block 3 only (F1,42 = 4.2, p < .05).

The remaining condition, Small Near-Perfect, was added in hopes of getting higher levels of accurate
responding than were seen in the Imperfect systems. This group’s observation trials were 85% consis-
tent, putting the condition midway in quality between the Imperfect and Perfect conditions. However, the
group’s mean accuracy was 39%, statistically equal to the other non-perfect conditions (specific compar-
isons of the means within an ANOVA containing all 7 conditions of the experiment × 3 blocks, showed
Small Near-perfect to be significantly different only from Small Perfect, F1,49 = 9.6, p < .01). Also,
like the other Imperfect conditions, Near-perfect showed no significant change over blocks. This sug-
gests that once there is inconsistency in a system, the number of exceptions is not particularly important
to children—even 15% inconsistency leads to major effects on learning.

Generalization In parallel with the analysis of Experiment 2, a data quality × block × type ANOVA
was run on the medium systems to determine whether there was a difference between the generalization
trials and the trained stimuli. In contrast to the adults, however, children showed no effect or interactions
involving type; generalization trials caused no extra difficulty for the children.

Subject Variables As in Experiment 2, a multiple-regression analysis was performed to see if various
characteristics of the subjects were affecting the results. The factors in the regression were: gender,
familial handedness, age, which computer was used, and indicator variables for the conditions. Only
the Small Perfect condition indicator (F1,27 = 7.5, p < .05) and gender (F1,27 = 4.7, p < .05) had
significant effects. The best fit estimates the boys’ accuracy scores 16% higher than the girls’.

Age, which had been a significant predictor in Experiment 2, was not a reliable predictor of perfor-
mance here (F1,27 = 2.7, n.s.), but the trend was in the same direction (accuracy scores increasing with
age).
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2.3.5 Discussion

The experimental procedure proved to be quite easy to use with 7-year-olds. They were, as might be
expected, more easily distracted, but also turned out to be more enthusiastic about participating. Despite
the fact that several subjects had to be eliminated because of extreme numbers of catch-trial errors, in
general the children seemed clear on the instructions and comfortable with the procedure. The data
clearly show that many subjects, especially (but not exclusively) those in the small conditions, learned
a significant amount from the data they were shown, despite the short amount of time available in this
version of the experiment.

There were also some quite surprising aspects of the data. Accuracy in several of the conditions was
very low—even below chance—and in looking for possible explanations for this, we found that some of
the children who were responding most consistently were following patterns that were not those in the
observation data.

Before taking up this interesting finding, however, we summarize the results of all the accuracy com-
parisons. Since the major interest of this experiment was how the children would compare to adults, the
discussion offered here will involve the data from all of the experiments, and in particular Experiments
2 and 3, which directly compared adults and children on the same task.

2.4 General Discussion of Accuracy Results

At the outset of the experiments, three major variables (data quality, system complexity, and age of
learners) were chosen for investigation. These variables were chosen as vehicles to test the more general
question of whether the system would be learned in a “language-like” way. In general, the accuracy data
described here do not support the idea that the learning going on in this experiment is language-like.
Rather, the results are in line with expectations if one considers this experiment to be a complex analytic
problem-solving task—a particular kind of task that children have great difficulty with, but which college
students are routinely faced with and expected to master.

Data Quality The primary variable whose effects we were interested in was the quality of the data
from which the subjects were supposed to learn. This variable was the only one manipulated within all
three experiments, and it had powerful effects in each one.

The perfect systems were readily learned by all groups—every group either reached near-perfect
responding, or was still improving in the last block. Thus we have no reason to doubt that all groups
could have solved these problems if they were given sufficient time.4

As soon as exceptions were introduced into the data, however, accuracy dropped off dramatically.
Although there were some subjects in each experiment who maximized (or maximized on some of the
dimensions), performance in the imperfect (and near-perfect) conditions was characterized overall by
accuracies between the chance and probability-matching levels. It is worth stressing that the low accuracy
scores in the imperfect conditions do not appear to be effects of the systems simply being too difficult to
learn. The same systems were learned well by subjects given perfect information. Also, the low scores
are found for systems as small as 3 stimuli, and (at least for children) with as few as 15% exceptional
trials. Furthermore, no improvement over blocks was found for any Imperfect group. All these results
suggest that it is not simply a case of the task getting slightly more difficult; rather, there is a stable,
qualitative difference between learning from perfect and imperfect information. Some implications of
this will be considered in chapter 4.

4A possible exception is in the Mixed condition of Experiment 1, where it is not clear that accuracies were continuing to
improve. However, this is presumably not due to the difficulty of learning from perfect information per se, but rather due to the
presence of exceptions in the other parts of the system they were learning.
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Complexity One major reason the complexity variable was included was in order to test a predic-
tion of Newport’s Less Is More hypothesis—that the maximizing seen in language learning could be a
consequence of a cognitively-limited learner trying to make sense out of a complex system. While the
complexity of the systems used in this experiment is much less than that of many structures in languages,
a trend towards increased maximizing with increasing complexity would tend to support the hypothesis
as an explanation of those age-related changes in language learning.

However, complexity had surprisingly little effect on learning in these experiments, and what effect
there was was in the opposite direction. There were no noticeable differences between the Small and
Medium Imperfect systems (which had 3 and 9 stimuli) compared in Experiment 2. Likewise, children
showed no reliable effect of system complexity; the non-significant trend was toward higher accuracy on
simpler systems.

The only clear complexity-related difference is between adults’ accuracies on the medium systems
of Experiment 2 and the large (27-stimulus) system used in Experiment 1. However, there were also
significant procedural differences between the two experiments—the response procedure in Experiment 1
was more cumbersome and confusing, and the feedback trials were apparently not as useful as the extra
observation trials which replaced them. Thus, it is not clear that we can interpret this difference as due
solely to the difference in complexity of the systems.

Therefore we find no support here for the prediction that maximizing should increase with increasing
complexity. While the complexity of these systems is far from the complexity of natural languages,
these data do not suggest that the rule-governed nature of language learning arises simply from the sheer
complexity of the system to be learned. It is still possible that complexity is one of a complex of factors
that are involved in this effect, but if so, then this experiment failed to include some of those critical
features.

Age Age is known to affect language learning in various ways. Of particular interest here is the inter-
action between data quality and the age of the learner: in language acquisition, children are relatively
insensitive to the quality of the data they have to learn from, ignoring unpredictable exceptions in favor
of forming rules. Adults, however, are more likely to closely match their language model, even if that
model uses linguistic structures inconsistently.

Thus, if this system is learned in a language-like way, we would predict more probability-matching
in adults, and more maximizing in children. One place this could show up is in the difference between
accuracies in the Perfect and Imperfect conditions; the prediction would be that this difference would be
large for adults, but small for children.

Adults in general learned all the systems more quickly and successfully.5 However, for both adults
and children performance on the Imperfect conditions was at about 70% of the level of performance on
the Perfect conditions; this is more consistent with a probability-matching interpretation than with the
prediction of maximizing in children, although the large individual differences also shed some doubt on
whether probability-matching is the proper description of the data: for most subjects, inconsistent data
seemed to produce somewhat worse performance than probability matching.

Overall, the age comparison yielded results that simply reflect the fact that adults are more skilled
at general problem-solving tasks than children. At least from the point of view of accuracy of learning,
there is no indication that the particular task under investigation is, like language-learning, one at which
children are particularly adept.

5One possible, but unproven exception is the response to the generalization test. Adults in the Medium Imperfect condition did
significantly more poorly on generalization trials than on the trained stimuli. In contrast, there was no generalization decrement
found for any group of children, but the direct comparison to the children’s Medium Imperfect condition is unfortunately mean-
ingless: the children scored too close to chance for a generalization decrement to be noticeable. Thus, we cannot say for sure if
children were more apt to accurately generalize than adults.
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Summary In general, the accuracy data are consistent with the prior literature on the learning of com-
plex systems. Accuracy is best for adult learners who are given perfect data, and particularly for those
asked to learn very simple systems. The various tests for language-like learning patterns yielded negative
results.

One explanation for these results would be that one simply should never expect language-like learn-
ing of a non-linguistic system. The algorithms or neural mechanisms used for learning in the linguistic
domain may be entirely different from those used in other domains, leading to different performance on
the different systems.

A second possibility, however, is that the structure of the systems used here was simply not suffi-
ciently language-like. Perhaps a still more complex system, or one which shared some crucial property
of languages that was overlooked in the design of these systems, would reveal language-like learning.

Before deciding between these possibilities, however, it is worthwhile to take another look at the
data. As has been noted several times before, the analyses presented so far have examined accuracy—
that is, the tendency for subjects to acquire the mapping patterns represented in the observation stimuli.
However, as has also been noted, a closer look at the individual subjects’ data reveals that many of
the children were responding with a high degree of consistency, following patterns which were not the
dominant patterns of the observation stimuli; the patterns they were following were their own innova-
tions. Indeed, this kind of innovation was found to be rampant in the children’s data, and also showed
up to some degree among the adults. Since this is reminiscent of some phenomena in language learning,
where children fit patterns that seem to be their own innovations into the framework of a system they
are learning, the next chapter is devoted to a reanalysis of the data uncovering these innovated patterns,
comparisons of their use by adults and children, and some speculations on the relevance of this discovery
to the language metaphor.
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3 Further Analyses: Consistency and
Innovation

The previous chapter presented results of the experiments in terms of accuracy, which was defined as the
proportion of trials on which subjects responded according to the pattern that had been most common
in the observation data—or, in the case of the random conditions where there was no dominant pattern,
responses were scored as accurate if they conformed to a particular pattern arbitrarily chosen by the
experimenter.

The data discussed in the present chapter are derived from different metrics, based on the idea of
looking for consistency in subjects’ responses regardless of whether they followed the patterns that were
suggested in the observation trials or not. The impetus for these analyses came from the discovery, in the
course of analyzing the accuracy data, that some subjects in the random conditions were scoring signifi-
cantly below chance, some even achieving accuracy scores of 0. This is indicative of great consistency,
but according to a rule that disagrees with the pattern called “accurate.” An example of this can be seen in
figure 3.1, which shows the responses of one child in the Small Random condition of Experiment 3. This
subject was given observation trials where colored squares moved in the three directions, with no corre-
lation between the colors and directions. Then, in the test trials summarized in the figure, she watched
a question mark move in one of three directions, and was asked to guess the color of the the object that
moved that way. For each of the three directions, this subject chose a single color on nearly every trial.

Upon further analysis, it turned out that this was not an isolated example, but in fact this kind of
pattern-following was very common, particularly among children. Many of the inaccurate responses of
children in the perfect and imperfect conditions, in fact, fell into very consistent patterns of responding.
As will be shown, children’s behavior can be described as tending to follow some pattern consistently,
whether or not that pattern is accurate.

This innovative pattern-following behavior is considered here in detail, since it has interesting paral-
lels to some phenomena in language acquisition. Children learning languages are known not to simply
mimic what they hear, but to productively use rules to create new utterances, as a number of the phe-
nomena of language learning discussed in section 1.2 attest. Overregularization errors are created by
using a learned rule in an improper context, combining morphemes that the child, presumably, has never
heard together. Simon, the subject of Singleton and Newport’s study, was also found to have innovated
combinations of forms which his parents used only separately (see Singleton, 1989)(Singleton, 1989).
Furthermore, in the process of creating a creole language, children may innovate entirely new forms and
structures (Sankoff, 1979).

Innovation thus appears to be a characteristic property of children’s language acquisition. The ap-
parent innovation in children’s learning of the experimental systems is therefore worth a careful look. In
the context of the experiment, the only way an innovative pattern (as opposed to a simple mistake) can
be identified is if that same pattern continues to be followed in a consistent manner. Thus, we begin by
defining a measure of the consistency of a subject’s responses that is independent of the particular pat-
tern that the subject chose to follow, and present summaries of the consistency of the various groups of
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Stimulus
Direction:

Response:
red green blue

↙ 2 25
→ 25 2
↖ 26 1

Table 3.1: Responses of one child to the Small Random system. The table shows the number of times
each of the available responses was chosen in answer to each of the stimuli by subject “3SR3C.” Overall,
76 out of 81 responses are seen to follow her favored pattern (shown in bold), for a consistency score of
93%. Note that the accurate responses, by arbitrary decision, would have fallen on the opposite diagonal.

subjects. Following this, we look for the sources of the consistency, which turn out to be quite different
for adults and children.

3.1 Consistency

There are many different kinds of patterns that a subject could choose to follow. For example, responding
with a repetitive sequence of responses such as “red, green, blue, red, green, blue. . . ” would be a kind
of regularity, although not one that bears any resemblance to the form of the data in the experiment or
that has any particular linguistic interest. Such keyboard patterns are commonly found in probability-
learning experiments, especially with children (Weir, 1964; Estes, 1972). However, such patterning did
not appear to be a common strategy by subjects in this study; although some subjects did use them, overall
they were not much more common than chance would predict and their use did not differ appreciably
between groups or even between ages. Thus this kind of patterning is not considered further.

More interesting than the simple keyboard patterns are patterns of the type that were actually used
in the experiment—associations between features of the objects and actions (such as “bouncing means
red”). Among the various kinds of patterns that we looked for, this appears to be the only kind that was
used by a large number of subjects.

Consistency Defined In order to measure this kind of patterning, we looked for the shape or color that
each subject most often chose in response to each direction or manner of motion. Once the most common
response was known, the percentage of trials was calculated on which that most-common response was
chosen. This is the consistency for that feature. The feature-by-feature consistencies were averaged
to get the subject’s overall consistency. For example, in figure 3.1, the boldface numbers indicate the
responses that were considered consistent for each of the stimuli. The consistency score is simply the
proportion of responses that fall into those boldfaced cells of the matrix—93% in this case.

For small systems, since each stimulus has only one feature (direction or a manner of motion), as
does each response (a shape or a color), it is simple to calculate the consistency of a stimulus directly:
the consistency for stimulus i is

Ci =
1

Ni

max
(

Ri1, Ri2, Ri3

)

(3.1)

where Rij is the number of times the subject chose response j to stimulus i, and Ni =
∑

j Rij is the
number of occurrences of the stimulus in the period of time under consideration (here Ni = 9; see
below). The overall consistency, C, is the mean of the Ci’s.
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Stimulus
Direction:

↙ 5 4
→ 1 3 5
↖ 9

Test 1

A = 11, C = 70

Response:

9
9

9
Test 2

A = 0, C = 100

8 1
9

9
Test 3

A = 96, C = 96

Table 3.2: An example of innovative responding. The tables show the number of each type of response
to each stimulus by one child in the Small Near-Perfect condition (subject 3SN1C); below each table
the accuracy and consistency for the block is shown. 85% of the data that this subject saw during the
observation trials followed the same diagonal pattern that he finally adopted in the third block. The
patterns used in the first two blocks were innovated by the subject.

For Experiment 3, consistency was calculated separately for each 27-trial test segment. This is be-
cause it was noted that some subjects changed patterns from one block to the next, but remained consis-
tent within a block (see, for example, figure 3.2). For symmetry, consistencies for Experiment 2 were
also calculated for 27-trial segments by dividing each of the 54-trial test blocks in half, and calculating
consistency separately for each half-block. Therefore, in all the consistency calculations reported here
Ni = 9, since there were 9 occurrences of each stimulus in each 27-trial segment.

For Medium systems, the consistency calculation is slightly more complex. Both of the dimensions
of variation of the objects and actions have to be considered; subjects are guessing both the shape and
color of the test objects, and both of those guesses have to be accounted for. Each of those guesses,
in turn, could be based on either the direction or the manner of motion of the stimulus,1 regardless of
which of those mappings the target pattern used. C values, as defined above, were therefore calculated
for both possible pairs of mappings: one score was formed by averaging the C’s for direction-to-shape
and manner-to-color mappings, and another score was formed by averaging C values of manner-to-shape
and direction-to-color mappings. The higher of the two averages was used as the subject’s consistency.
This maximizing operation, designed to make sure that no pattern that subjects might use would be
overlooked, does make it likely that consistency scores on medium systems will be larger, just according
to probability, than consistency scores on small systems.

Note that consistency, as defined, must always be greater than or equal to 33%. A consistency of
33% indicates that a subject has used each of the 3 possible responses equally often in response to each
of the stimuli, so that each of them gets 1/3 of the total. Any other arrangement of responses will favor
one of the stimuli, and have an higher consistency value. For this reason, all consistency graphs to be
presented are plotted with the Y axis beginning at 33%.

If a subject were just responding randomly, by chance one would not expect their responses to fall into
a perfectly even distribution. For a particular number of trials and possible responses, it is straightforward
to enumerate the possible ways in which the responses could fall, and thus calculate the expected value
of consistency. For the 27-trial blocks with 3 stimuli and 3 responses which were used here, this chance
value of consistency is 50%.2

1Or, in theory, both. There is little evidence that any subject used this more complex type of rule, however.
2Calculated by the counting rule for the 9 trials and 3 responses that were made to each stimulus. Averaging over stimuli

does not affect the expected value, although it does narrow the variance of the distribution. For medium systems, the expected
consistency is slightly higher than 50%, because of the operation of taking the maximum of the two possible dimensional mappings,
and the variance somewhat lower because of the extra averaging.
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Entropy Other measures of the consistency of responses are also possible. For instance, in information
theory, a standard measure of the disorder in a partitioned set is its Entropy. The entropy of the set of
choices that a subject makes could serve the same purpose as the consistency measure described here,
although with the opposite sense: entropy values are lowest when consistency is highest. Entropy values
can range from 0 (perfect order, or 100% consistency) to log N (total disorder; 33% consistency). For
comparison with equation 3.1, the entropy value for a subject’s responses to stimulus i would be given
by

Hi =
∑

j

Rij

Ni

log
( Ni

Rij

)

. (3.2)

The overall measure of entropy corresponding to our C would be the conditional entropy of the subject’s
response given the stimulus, which works out to be simply the mean of the Hi’s (Baclawski, Rota &
Billey, 1989).

The advantage of using entropy rather than the consistency measure defined above would be that
the number of responses in every cell is taken into account, rather than just the number of responses in
the maximal cell. Say subject A chose the three possible responses to a particular stimulus 5,2, and 2
times, respectively, and subject B chose them 5,4, and 0 times. Both subjects have a consistency on that
stimulus of 5/9; but the entropy of subject A’s responses is greater than subject B’s, since A’s distribution
of responses is more spread out.

On the other hand, the consistency measure has several advantages over entropy:

• It is simple to calculate, and its characteristics are easily understood.

• Consistency scores are directly comparable to accuracy scores; both are expressed as the percent-
age of trials on which responses followed a certain pattern (averaged over dimensions, for medium
systems).

• The difference between consistency and accuracy is a meaningful quantity: it is the percentage of
trials (averaged over dimensions) which are responded to according to a consistent pattern which
is not a pattern from the observation data. This quantity, which I call innovation, will be discussed
further in section 3.3.

To see if any interesting data would be lost as a consequence of using consistency rather than the
more sensitive entropy measure, entropy scores were calculated for all subjects’ data, and plotted against
consistency scores. No major deviations from the expected logarithmic curve were found. Therefore, the
more versatile consistency variable was used for all the analyses that will be presented here.

Consistency Data Figures 3.1 and 3.2 show the average consistency scores for each of the conditions
in Experiments 2 and 3. There are several striking features of the data. For the adults, the consistency
graphs are very similar to the accuracy graphs presented in figure 2.5; consistency is highest when data
quality is highest and, with the exception of the Small Random condition, is roughly equal to the group’s
accuracy. For children, however, the most striking feature is the evenness of the consistency scores.
Unlike accuracy, the level of consistency is close to constant for children, both for particular groups of
subjects over time, and between the groups at different levels of data quality.

ANOVAs were run comparing the consistency scores in each of the two experiments, parallel to the
accuracy analyses described in the previous chapter. First, a 4 conditions × 3 blocks ANOVA was run for
the adult data from Experiment 2. A significant effect of condition (F3,25 = 5.6, p < .01) was caused
by the high consistency in the Medium Perfect condition (specific comparison of Medium Perfect with
Small Imperfect: F1,25 = 6.9, p < .05); the differences between the two imperfect conditions and Small
Random were not significant.
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Figure 3.1: Consistency scores for Experiment 2 (adults). See explanation below.
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Figure 3.2: Consistency scores for Experiment 3 (children). Within each probability level, the filled
marks show average scores for the medium group, and the outline marks are for the small group. Note
that the Y-axes begin at 33%, which is the minimum possible consistency score. The horizontal dotted
line shows the consistency score to be expected for a randomly-guessing subject.
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Figure 3.3: Consistent responding by individual subjects in the Small Random conditions of Exper-
iments 2 and 3. Most children show some amount of pattern-following, while most adults respond
randomly. A few adults, however, look more like the children according to this measure. Each subject’s
three blockwise consistency scores were compared to chance (50%) by two-tailed t-tests; 4, V, and VV
designate p < .10, p < .05, and p < .01 respectively.

In contrast, for children, data quality did not have a significant effect. An ANOVA comparing 3
levels of data quality × 2 levels of complexity × 3 blocks showed an effect of complexity (F1,42 =

11.3, p < .01), with small systems scoring an average of 13% greater consistency than medium systems,
and an interaction between data quality and block (F4,84 = 3.2, p < .05). The three-way interaction was
marginally significant (F4,84 = 2.4, p < .10). The locus of these interactions appears to be the increase
in consistency over time in the perfect conditions, which unlike the imperfect and random conditions,
had significant differences between blocks (F1,14 = 4.2, p < .05).

Thus, children seem to respond with a given level of regularity regardless of the quality of data they
get about a system. Unlike adults, who respond most consistently to systems that are presented most
consistently, children’s consistency seems to be independently produced.

Although data quality does not seem to affect children’s consistency, the system’s complexity does.
In all cases children were more consistent on small than medium systems. One could speculate that
this difference reflects the fact that in order to respond consistently to a medium system, subjects would
have to be following—and either learning or innovating—twice as many rules as they would for a small
system. Adults did not show any difference, just as they did not show a complexity-based difference in
accuracy.

3.2 Sources of Consistency

One problem with the consistency measure is the confounding of pattern following with pattern invention.
Accurate responses are scored as consistent, just like responses that follow any other pattern, but we
would like to be able to see to what extent subjects are following the patterns of the observation data
versus following patterns that are their own inventions.

Random Conditions One case in which we can avoid this ambiguity is by looking at consistency in
the random conditions. In these conditions, there were no patterns in the observation data, so that any
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Figure 3.4: Sources of consistent responding for adults and children, non-random conditions. The dark
bottom portion of each bar is the average accuracy of the group; the total height is their consistency. The
lightly shaded portion, which is called innovation, is that portion of subjects’ consistency that is derived
from following patterns invented by the subject.

above-chance consistency must have been invented by the subject. Both children and adults were found
to show some consistent responding in random conditions (figures 3.1 and 3.2). However, figure 3.3,
which details the Small Random condition data for each subject, shows that three of the adult subjects
are responsible for all of the consistency found in their group. Most of the adults, in fact, responded
with what appears to be random guessing; their consistency is just what one would expect by chance.
Two subjects were quite consistently following innovated patterns in their answers, and a third began
consistent but declined to random responding by the last block. Finally, one subject distributed her
responses significantly less consistently than chance, which is to say, with a more spread out distribution
than random guessing would produce.

For the children, in contrast, consistent responding was the rule rather than the exception. The
majority of subjects had consistency scores above chance. Despite the patterns in the observation data
to which they were exposed and on which they were told to base their answers, children seemed quite
readily to adopt the solution of answering based on a pattern that they had made up. As we will see, the
same is true in the other conditions of the experiment.

Non-Random Conditions In the conditions in which there are patterns to follow, nearly all of adults’
consistency can be accounted for by accurate responding. Since a subject who is responding accurately
is of necessity also responding consistently, it is not possible for subjects’ consistency score to be less
than their accuracy score. It is, of course, possible for consistency to be higher: the difference between
the two represents the extent to which the subject following an innovated pattern.

Figure 3.4 shows how much of each group’s consistency is the result of accurate responding, and
how much the result of innovation. In order to provide a fair comparison between children and adults,
the data in this figure comes from selected blocks of the two experiments. Since the adults’ observation
blocks were three times as long as the children’s, and the test blocks twice as long, selecting only block
1 of Experiment 2 and comparing it with blocks 2 and 3 of Experiment 3 is appropriate. Those blocks
contain 54 test trials of each experiment, the last of which were after 126 observation trials in each case.3

3The difference still remains that the adults received all 126 observation trials before the first test block that is included in the
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For adults in all the non-random conditions, the difference between accuracy and consistency is
quite small. What differences there are, in the Medium Perfect and Small Imperfect conditions, were
primarily due to a small number of subjects in each condition, with the majority of subjects almost never
consistently follow inaccurate patterns. This is the same pattern that was found in the Small Random
data discussed above.

In contrast, children’s consistent responses are much less often the result of accuracy or single ex-
ceptional subjects, and more often the result of widespread non-accurate pattern following. In fact, the
surface similarity of adults’ and children’s consistency scores (which averaged 76% and 68%, respec-
tively) now appears to be quite a surprising coincidence, since children’s accuracies are so much lower.
The children make up this difference by creating patterns, and then following those invented patterns
with high consistency.

Thus, although children and adults both display high consistency, this consistency came primarily
from different sources. Adults are consistent because they follow the patterns of the data shown to
them; their consistency is directly influenced by the quality of that data, and, except for some isolated
exceptions, if they have not “figured out” the patterns in the data they will guess randomly. Children, on
the other hand, are equally consistent on all the systems of a given complexity, regardless of the quality of
the data they get about the system. Some of this consistency may be accurate, depending on the difficulty
of the system, but only when accuracy exceeds the baseline 60-75% consistency does it begin to show
any effect on overall consistency of responses.

3.3 Innovation

The difference between a subject’s consistency and accuracy scores has been termed innovation, repre-
senting the tendency of the subject to create and follow patterns that had no antecedent in the observation
data. It has been suggested that children are more prolific innovators than adults, an assertion that is
tested in this section.

Although innovation has been described only in terms of the non-random conditions, it would be
helpful to have an innovation measure that was applicable to all subjects. In random conditions, however,
there is the complication that the accuracy scores are arbitrary. Consider two hypothetical subjects,
both with 100% consistent responses, whose accuracy scores are 0% and 100% respectively. If the two
subjects were in a perfect condition, the one with 100% accuracy would clearly be following the pattern
of the observation data, and would thus have an innovation score of 0; while the one with 0% accuracy,
consistently violating the pattern of the observation data, would be credited with 100% innovation. If the
two subjects were in a random condition, however, then the only difference between them is whether the
pattern they followed happened to coincide with the arbitrary pattern used to score accuracy—a pattern
that they had no way of knowing. The consistent pattern of both subjects’ responses must have been
invented by the subjects themselves. Thus, these two hypothetical subjects should receive the same
innovation score: the amount of consistency in their responding that cannot be accounted for by patterns
in the data. The observation data shown to random-condition subjects follows each possible pattern 33%
of the time, so both subjects ought to be credited with 67% consistency. Thus, we define innovation, in
the context of a random condition, as consistency minus 33%.

Figure 3.5 shows mean innovation scores for the four conditions that occurred in both experiments,
using only data from the comparable blocks of the two experiments as previously described. The plotted
data was also analyzed by an ANOVA of 2 ages × 4 conditions, which confirmed that there was a signifi-
cant difference in innovation between the ages (F1,56 = 10.2, p < .01), with children having innovation
scores almost twice as high as adults (26% vs. 15%).

comparison, while the children had only seen half of them. Also, the children had experienced one test block preceding the first
test block that is included. However, this was as close to comparable as it was possible to achieve given the different procedures.
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Figure 3.5: Comparison of innovation by adults and children. Data are from comparable conditions
and blocks of Experiments 2 and 3 only. Children offer significantly more innovative responses in all
conditions.

The difference between conditions was also significant (F3,56 = 23.6, p < .001); the Small Random
condition led to the most innovation (46%), significantly higher than the next highest condition (F1,56 =

30.0, p < .001). Next was Medium Imperfect (17%), Small Imperfect (12%), and finally Medium
Perfect (6%). These three were not reliably different pairwise, but Medium Imperfect was significantly
larger than Medium Perfect (F1,56 = 4.2, p < .05). This confirms the intuitive idea that, for both adults
and children, innovation of new patterns is is most likely when the patterns in the data are lacking or are
difficult to find.

There was no interaction between the variables, which suggests that the bias of children toward
innovative responding is not limited to particular kinds of data, but rather, it shows up in all of the
combinations tested.

3.4 Discussion

One major finding of this analysis was that, despite the fact that children scored much lower than adults
in terms of accuracy, the two age groups were nearly equal in terms of the consistency of their responses.
The difference is made up by the much larger amount of innovation among the children (nearly twice as
much overall).

The different conditions also revealed effects on consistency quite different from their effects on ac-
curacy. The effect of data quality on accuracy was generally positive for both adults and children; both
found the exception-free data easier to learn from. This same pattern holds for the effect of data quality
on adults’ consistency, but not for children. Children had nearly equal levels of consistent responding
whether the data was perfect or random; the difference in accuracy was made up for by increased inno-
vation. The only exception was in the Small Perfect condition, where accurate responding finally took
over from invented patterns.

In general, for adults’ performance, the use of the consistency measure does not add much to what we
already had discovered. Except in the case of two or three subjects in the Small Random condition, there
seems to be little tendency for adults to respond consistently according to patterns other than the ones
suggested by the observation trials. If one were to paraphrase the rule that adults seem to be following, it
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would be simply to match the observation data as closely as possible; probability-matching, with perhaps
some bias towards exploratory or random responding to account for the tendency to undermatch. It
appears that individual subjects have different responses to imperfect or random data, leading some to
maximize and others to guess in an apparently random fashion.

Children, too, will follow the observation patterns if they find them. As would be expected due to
their earlier stage of cognitive development, they are less successful in finding the patterns. However,
they do show good learning when the target system is relatively simple, as is particularly evident in the
Small Perfect system.

However, superimposed on this pattern-following behavior there is another response rule that children
seem to follow just as strongly, which could be paraphrased as “Respond consistently.” This rule applies
not only in the random condition, but any time that the child has not (yet) figured out the accurate pattern.
The made-up patterns seem to be followed with a consistency averaging around 70%, but ranging up to
100% consistency.

For example, consider again table 3.1. The child is responding to the observation-data’s pattern only
in the last block. In blocks 1 and 2, she responded according to innovated patterns with just about the
same consistency. This illustrates another point: although accuracy tends upwards over blocks in many
conditions, consistency appears to be stable over time; some subjects, like this one, are actually replacing
innovated patterns with accurate ones, while maintaining a constant level of consistency.
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4 Conclusions

This investigation began from curiosity about whether the mechanisms used for language acquisition and
for learning other complex systems are the same or different. Linguistic and non-linguistic learning tasks
are treated quite differently in the literature: while descriptions of language acquisition emphasize how
children overlook exceptions and form rules even from inconsistent data, descriptions of non-linguistic
tasks using probabilistic data usually highlight subjects’ probability-matching behavior.

Various phenomena in language acquisition point to children as being the innovators and regularizers
of language. Overregularization is a common example, showing that children are, for a time, willing
to trust a generalization (past tenses are formed by adding “-ed”) over specific conflicting data (adults
use “went,” not “goed”). Similarly, children exposed to inconsistent input from parents who are not
native speakers can surpass that input, removing the irregularities (Singleton & Newport, 1993). And
finally, creolization, the process by which children make a communication system into a language by
creating and sharpening regularities, has been described as a more extreme example of this same general
phenomenon: that children, but not adults, have a tendency to regularize linguistic systems that they
encounter (Bickerton, 1984).

The most familiar result of probability-learning experiments, on the other hand, is choosing the
alternatives just as frequently as they have been observed to be correct. However, such matching is
not the universal outcome of probability-learning experiments. As was discussed in the introduction,
matching appears to be only one of a number of possible techniques that learners have at their disposal:
overmatching is common, slight differences in procedure can cause people to maximize rather than
match, and in many cases matching behavior turns out, on more careful analysis, to actually be the result
of the subject testing out hypotheses about patterns. Most interesting in terms of the present study is
that children also behave differently than adults; certain ages (depending on the specific problem) are
particularly likely to maximize, as well as more likely to minimize by following incorrect patterns (Weir,
1964; Bever, 1982).

Thus, although learning in the two domains has been described quite differently, the results do not
seem incompatible when they are directly compared. Considering the large differences in behavior that
can result from small changes in experimental procedure or system structure, which are well documented
in the probability-learning literature, it is plausible to consider that the differences in learning seen be-
tween linguistic and non-linguistic tasks are due more to the structure of the problems that have been
tested than to the difference in domain.

The systems taught in non-linguistic probability-learning experiments are usually extremely simple,
often with only two or three possible responses and no context or stimuli that give information about the
trial. Although rather sophisticated problems can certainly be devised even in this restricted paradigm
(by making the probabilities vary over time, for example, or making the correct choice dependent on
previous choices), the kind of complexity that is introduced is quite different from the kind of complexity
that languages embody.
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Maximizing: Pick A1 on (nearly) every trial.
Overmatching: Pick A1 with probability greater than p1.

Matching: Pick A1 with probability p1.
Undermatching: Pick A1 with probability less than p1, but more often than the other responses.

Guessing: Pick all responses approximately equally often.
Minimizing: Pick A1 less often than the other choices.

Table 4.1: Possible results of probability-matching experiments. Here A1 stands for the most-often-correct re-
sponse, and p1 for the proportion of trials on which A1is correct.

This study set out to test the apparent parallels between the two literatures, exploring what looked
like commonalities between language and non-language tasks requiring learning from inconsistent data.
The experiments follow probability-learning tasks in format, but use target systems that are constructed
in ways analogous to linguistic structures. This new experimental paradigm worked well both with
adults and with 7-year-old children, hitting a level of difficulty that was learnable by both groups, but
challenging enough to show strong effects of the parameters that were varied.

The systems used were miniature analogues of morphology. The subjects learned to make appropriate
connections between objects and actions, as language learners must find correspondences between words
(or parts of words) and their meanings. In addition, the experimental systems were compositional, in that
the mappings were best described at a fine level of detail (individual features of the objects and actions),
but were presented as complete examples containing multiple pieces of information. Generalization trials
were used to directly test whether subjects were sensitive to this fine level of detail; in order to generalize,
subjects had to have analyzed the observation stimuli into their component parts, learned (or innovated)
mappings at that level of detail, and then reassembled the resulting features in order to form complete
responses.

If linguistic and non-linguistic learning are accomplished by the same mechanisms, and our system
is close enough to linguistic systems in structure and complexity, then one would predict that some of the
features characteristic of language-learning would also appear in the learning of this non-linguistic data
set. Specifically, one might expect children to be more apt than adults to regularize imperfect patterns.
If it is the complexity of language, in particular, that leads children to regularize, then the more complex
versions of the experimental system might also be more clearly maximized.

Since the procedures used were designed to follow the general procedures of the probability-learning
paradigm, let us first consider the results in those terms. In general, the results of a probability-learning
experiment are described by comparing the proportion of trials on which a subject chooses a particular
response to the proportion of trials on which that response was correct (see table 4.1).

Our hypotheses were framed in terms of the prevalence of maximizing, as opposed to matching,
but the actual results turned out to be more varied. Matching and maximizing were both found, but to
greater or lesser extents so were all of the other possibilities listed in table 4.1. The most common result
was undermatching—responding with accuracies somewhere between chance and the data’s consistency
(quite the opposite of the prevalent tendency in probability-learning experiments for subjects to over-
match). There were also a few subjects who who maximized one dimension of the problem they were
given, while apparently guessing on the others.

Adults’ average performance was in some cases very close to the probability-matching level (par-
ticularly in the imperfect conditions of Experiment 2) , which makes it tempting to broadly summarize
adults as matchers on this task. However, given the large individual differences, this may be an oversim-
plification.

It is possible that the differentiation of response probabilities is a general reaction to complex probability-
learning tasks. In comparing these results to other probability-learning experiments, it must be kept in
mind that the task in this experiment is considerably more intricate than the standard paradigm. Even the
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simplest versions used here, the small systems, are comparable to running in three 3-choice probability-
learning experiments simultaneously: there are three contexts (signaled by the three stimulus actions), in
each of which the subject must learn the probabilities of each of the objects being the correct answer. In
the medium and large systems, there are not only more contingencies to learn, but the correct mapping
between dimensions must be figured out before the mappings between features can be considered.

Perhaps we should not be too surprised, therefore, that accuracies were for most subjects lower than
matching level; even if probability-matching is the underlying response rule, there are many chances
for failures of discrimination, learning, or memory to affect performance. A useful avenue for future
research would be to try some systems intermediate in complexity between the standard probability-
learning paradigm and the simplest systems used here, in order to find out just where and how the
familiar probability-matching patterns begin to break down into results like those of the current study. In
the absence of such studies, no thorough analysis of the data in terms of probability-learning theory is
attempted here.

However, there are several descriptive generalizations that can be offered about adults’ approach to
this task: adult’s responses appear to be probabilistic in nature, easily described (at the individual level,
at least) within the vocabulary of probability-learning theory. Subjects’ accuracy is directly related to
the quality of their data, and consistency is nearly entirely due to accuracy. There is, however, great
individual variation on just where in the spectrum from random guessing to maximizing they fall; this
varies even within subjects on different parts of the system. Overall, the pattern appears to be that adults
match or maximize parts of the system that they are confident of, and otherwise guess randomly.

These generalizations do not hold for children. In fact, there does not seem to be any satisfactory
explanation of children’s behavior using only the terminology of probability-learning theory. Rather,
consistency and innovation are the unifying principles of children’s approach to this task. While inno-
vation falls under the general category of “minimizing,” consistency crosscuts the distinctions; the same
level of consistency can be found whether the subject is minimizing, maximizing, or anything in be-
tween. Thus, although the usual way of examining the results of probability-learning experiments is to
look at accuracy scores, making sense of children’s behavior required a different metric, which looks at
the consistency of children’s response patterns, regardless of the match between those patterns and the
observation data.

A natural interpretation of the consistency results is easier to reach when one remembers that the
systems were designed to be language-like in several respects, and considers the results in terms of
the differences between adults and children in language acquisition. In linguistic tasks, there exists the
possibility of learners acquiring something different than the target system, of enhancing or regularizing a
pattern which changes the language. While we initially had not suspected that this might happen in a non-
linguistic task, it became clear that this is what the children were doing with the systems we presented
to them. Children in all conditions of the experiment seemed unsatisfied with random guessing; rather,
they required that their responses follow some pattern consistently.

This level of consistent responding, which was around 60% for medium systems and 70-75% for
small systems, was unaffected by the data quality or the accuracy of the children’s responses; even the
correlation between individual subjects’ accuracy and consistency scores is small (r = .71, with a slope
of .45; compare this to r = .92 for adults, with a slope of .76). This is impressive, given that accuracy is
a direct constituent of consistency.

Children were able to have equal consistencies across the different levels of accuracy and data quality
because of the phenomenon we have called innovation. Overall, children’s responses seem to follow one
of two strategies: if they can learn the system and respond accurately, they do so. But if not, rather than
guessing, they innovate a response rule, and follow that on 60–75% of the trials. Compared to adults,
they are much less efficient at extracting the actual rules (if any) from the data, but they also seem more
willing to draw conclusions from data that is inconsistent or even totally random.
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To return, then, to the question asked at the outset: does language acquisition recruit the same learn-
ing mechanisms as other learning? The evidence from these experiments does not support the claim in
the way we had initially thought; we did not find clear maximizing by children where adults probability-
match. Adults sometimes probability-matched and sometimes maximized, and children seldom did either
one. Thus, in terms of our original hypotheses, the experiments proved inconclusive. If clear maximizing
can be obtained from children in this kind of task, then it must be with a different sort of system.

However, the results in terms of consistency and innovation are more intriguing than even the pre-
dicted results would have been. Children, in a manner more subtle than was anticipated, demonstrated
a determination to maintain a particular level of consistency in their use of these probabilistic systems.
When unable to extract a pattern from the data they were given (or if there was none), they were quite
willing to use a pattern created out of whole cloth.

These results are reminiscent of the innovative character of children’s language acquisition, suggest-
ing that there may indeed be similar mechanisms at work here. However, much work remains before
these results will be more than suggestive. Further experimentation, designed particularly to look at this
kind of innovative responding, is called for to answer the many questions that come to mind:

• Where, if anywhere, do children’s “innovative” response rules come from? Are they picked at
random, or is there something in the data, such as perhaps the first occurrence of a particular
stimulus, that holds special salience for children and which is influencing their choice of patterns?

• At what age is this phenomenon most prevalent? 7-year-olds are already old enough that if they
begin to learn a language they will do so differently than natives (Johnson & Newport, 1989;
Krashen, Long & Scarcella, 1982). Thus, it would be particularly interesting to run a variant of
this procedure with younger subjects. Indeed, the results of Bever (1982) and Weir (1964) suggest
that maximizing is most prevalent at certain ages, but the structure or complexity of the task effects
what ages those are.

• Why was matching not found in this experiment? It would be worth trying a similar procedure
using simpler systems, to find out when and how probability-matching behavior breaks down into
the highly variable behavior found among adults in the present study.

• A few adults appeared to be more similar to the children than to the other adults. Are these indi-
vidual differences correlated with other differences in their learning styles, perhaps even in their
language-learning ability? One of the puzzling results of critical period studies of second language
learning is that adults show large variability: some adults look much more like childhood learn-
ers than do others (Johnson & Newport, 1989). Perhaps these individual differences in language
learning may show up in laboratory paradigms as well, and are the resuls of individual differences
in learning style more generally.

• What is it that causes adults and children to be different in this way? Why do children not seem to
learn that the data do not follow any pattern?

These data suggest that children may innovate in the learning of any structured system, just as they
are known to do in language acquisition. What, then, accounts for language’s seeming uniqueness—why
is it an exception to some “laws of learning”? Certainly imperfect data are found in every domain that
children encounter; the world is not a perfectly consistent place. However, in learning about most types
of data—arithmetic, say—any “innovative” pattern that children might use is simply wrong. We could
speculate that what is unique about language is not any difference in the way children approach it, but a
difference in the way language behaves when it is approached: adults find children’s speech interesting
and charming, even when it is quite ungrammatical, because of its consistent inventiveness; we make
more of an effort to understand than to correct. Once in a while, a child’s invention is so compelling that
it is incorporated into the mainstream language—as if the language itself were too charmed to refuse.



45

In this way, languages adapt to the way children learn; generation by generation, the structure of the
language comes more and more to resemble the biases of its learners, until the two are difficult to tell
apart.
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